MAST 324 Introduction to Optimization Winter 2018

Instructor: Dr. Josef Brody, Office: LB 921-3 (SGW), Phone: 514-848-2424, Ext. 3218

Email: josef.brody@concordia.ca

Office Hours: Thursdays, 11:00-1:00 PM.

Textbook: Lecture notes and (if needed recommended text book is)

Operations Research: Applications and Algorithms, by Wayne L. Winston,

Brooks/Cole.

Final Grade: (1) Midterm Exam 40%

(2) Final Exam Part A 60%, Part B (midterm make up) 40%

If the grading scheme for this course includes graded assignments, a reasonable and representative subset of each assignment may be graded. Students will not be told in advance which subset of the assigned problems will be marked and should therefore attempt all assigned problems.

Weeks	Lecture notes	Topics
1	Introduction to Linear Programming	Linear Programming Problem (LPP)
		Matrix and expended forms
		Modeling and Examples
		Graphical interpretation for two variable problems
2	Convexity	Convex sets, and convex hull
		Convex combinations and functions
		Hessian and principle minors
3	Extreme points and directions	Extreme points
		Unbounded polyhedron and its directions
		Slack variables
4	Corner Point Theorem	Convex Cones
		Representation & Corner point theorem
		Unbounded LPP
5	The Simplex Method	Basic ideas of the simplex method - algebraic solution
		Initial and final feasible tableau
6	Continuation of the simplex method	Unboundness
		Alternative solution
7	Review: Midterm	
8	Degeneracy	Cycling & stalling
		Degenerated tableau, and associated basic feasible solutions
		Lexicographic ordering to Preventing cycling

9	Artificial variables	Initial problem
		The two-phase method
		Single artificial variable technique
10	The Revised Simplex Method	The tableau form
		The product form
11	Duality	Dual LPP
		Karush-Kuhn-Tucker conditions
12	Dual Simplex Method and Sensitivity	Dual simplex method
	Analysis	Sensitivity Analysis
13	Review: Final Exam	

Academic Integrity and the Academic Code of Conduct

This course is governed by Concordia University's policies on Academic Integrity and the Academic Code of Conduct as set forth in the Undergraduate Calendar and the Graduate Calendar. Students are expected to familiarize themselves with these policies and conduct themselves accordingly. "Concordia University has several resources available to students to better understand and uphold academic integrity. Concordia's website on academic integrity can be found at the following address, which also includes links to each Faculty and the School of Graduate Studies: concordia.ca/students/academic-integrity." [Undergraduate Calendar, Sec 17.10.2]