MATH 475 (MAST 661A/865A) Discrete Dynamical Systems, Chaos and Fractals *Fall 2016*

Instructor:	Dr. P. Gora, Office: LB-901-17 (SGW), Phone: 848-2424, Ext. 3257 Email: pgora@mathstat.concordia.ca
Web Page:	http://www.mathstat.concordia.ca/faculty/pgora/m475/
Office Hours:	TBA or by appointment.
Recommended Textbooks:	 Petersen, Karl, <i>Ergodic Theory</i>. Corrected reprint of the 1983 original. 2. <i>Cambridge Studies in Advanced Mathematics</i>, Cambridge University Press, Cambridge, 1989. Boyarsky, Abraham; Gora, Paweł, <i>Laws of chaos: Invariant measures</i> <i>and dynamical systems in one dimension</i>. <i>Probability and its</i> <i>Applications</i>, Birkhäuser Boston, Inc., Boston, MA, 1997. Fractals Everywhere by Michael F.Barnsley.
Topics:	 Introduction to Ergodic Theory Basic Constructions in Ergodic Theory Ergodic Theorems Frobenius-Perron operator and absolutely continuous invariant measures Metric spaces, Hausdorff metric. Iterated Function Systems and their attractors. Computer graphics using IFS attractors. Fractal dimension.
Assignments:	Homework will be given weekly and constitutes a very important part of the course. Students are encouraged to use Maple (or other such system) whenever it is applicable. Late homework will not be accepted.
Midterm Exam:	There will be an in-class test. The exact date of the exam will be announced during the lecture at least two weeks in advance.
Final Exam:	To be announced.
Evaluation:	The final mark is the maximum of: 20% assignments + 20% midterm test + 60% final exam 100% final exam