MATH 370 Differential Equations Fall 2016

Instructor: Dr. R. Hall, Office: LB 901-21 (SGW), Phone: (514) 848-2424, Ext. 3221

Email: richard.hall@concordia.ca

Web: www.mathstat.concordia.ca/faculty/rhall/

Office Hours: Wednesdays, 15:00–16:30.

Prerequisites: MAST 214, 234, 234 or 264 or MATH 251, 252, 264 or equivalent.

Text: Elementary Differential Equations and Boundary Value Problems, 10th Edition, by

William E. Boyce amd Richard C. DiPrima (Wiley).

Assignments: Assignments are very important; they indicate the level of difficulty of the

> problems that the students are expected to understand and solve. Therefore, every effort should be made to do and understand them independently. The assignments will be corrected and a representative sample graded, with solution sets posted weekly. These grades together are worth a maximum of

10%.

Web Resources: Many excellent animated illustrations to the text are collected at the site

www.wiley.com/college/boyce. Regular use of this resource is recommended.

Use of Computer It is optional but much recommended to install and use Maple or Mathematica. Algebra System:

These computer tools can be used to verify and illustrate any analytical

results you get while doing your assignment problems.

Calculators: Electronic communication devices (including cell phones) are not allowed in

> examination rooms. Only "Faculty Approved Calculators" (SHARP EL-531 or CASIO FX-300MS) are allowed in examination rooms during mid-term and

final.

Test: A midterm test covering the first six weeks will be given in week 7 (or later).

Final Grade: The highest of the following:

• 90% final exam and 10% assignments.

30% midterm, 10% assignments, and 60% final exam.

Approximate schedule of topics, assignments, solutions, and midterm date will be posted on my webpage: www.mathstat.concordia.ca/facutly/rhall/.

Week	Sections	Topics
1	1.1 - 1.4	Solutions of some differential equations. Classification of differential equations.
2	2.1 - 2.3	Linear equations; integrating factors. Separable equations; Modeling with first order equations.
3	2.4 - 2.6	Linear and Nonlinear equations. Autonomous equations; population dynamics. Exact solutions; integration factors.
4	2.7 - 2.9	Numerical approximations. Existence theorems. First order equations.
5	3.1. – 3.3	Homogeneous equations, constant coefficients. Linear homogeneous equation solutions: Wronskian. Complex roots of characteristic equation.
6	3.4 – 3.6	Repeated roots; reduction of order. Nonhomogeneous equations; undetermined coefficients. Variation of parameters.
7	3.7 – 3.8	Mechanical and electrical vibrations. Forced vibrations.
8	Chaps. 1 – 3 Midterm	Midterm test, closed book Scope: Chapt. 1 – 3 inclusive.
9	4.1 – 4.2	General theory of nth order linear equations. Homogeneous equations with constant coefficients.
10	4.3 - 4.4	Method of undetermined coefficients. Variation of parameters.
11	5.1 - 5.3	Review of power series, Series solutions at an ordinary point.
12	5.4 – 5.6	Euler equations. Frobenius' method. Series solutions near a regular singular point.