MATH 265
Advanced Calculus II
Winter 2017

Instructor:	Dr. E. Duma, Office: LB 901-16 (SGW), Phone: 514-848-2424, Ext. 3064 Email: ewa.duma@concordia.ca		
Office Hours:	To be announced.		
Prerequisites:	Math 264 or an equivalent multivariable differential calculus course.		
Text:	Multivariable Calculus, 8th Edition, by J. Stewart. ISBN: 978-1-111-56401-8.		
Assignments:	Assignments are <i>very important</i> as they indicate the level of difficulty of the problems that the students are expected to solve and understand. Therefore, every effort should be made to do and understand them <i>independently</i> . The assignments will be corrected and a representative sample graded, with solution sets posted weekly. These grades together are worth a maximum of 10%.		
Web Resources:	Many excellent animated illustrations to the text are collected at the site www.stewartcalculus.com, see TEC (Tools for Enriching Calculus) for the Edition 8. Regular use of this resource is recommended.		
Use of Computer Algebra System:	It is optional but much recommended to install and use Maple or Mathematica. These computer tools can be used to verify and illustrate any analytical results you get while doing your assignment problems.		
Calculators:	Electronic communication devices (including cell phones) are not allowed in examination rooms. Only calculators approved by the Department (with a sticker attached as proof of approval) are permitted in the examination rooms during mid-term and final. The preferred calculators are the Sharp EL 531 and the Casio FX 300MS , available at the Concordia Bookstore.		
Test:	A midterm test covering the first six weeks will be given in week 7 (or later), weighing 30%. There is no make up for a missed test.		
Final Grade:	 The highest of the following: 90% final exam, 10% assignments, 30% midterm, 10% assignments, and 60% final exam. 		

Week	Sections	Topics	Assignments
1	15.1	Double integrals over rectangles (Fubini's Theorem)	p.1039: 4, 10, 12, 22, 28, 42
2	15.2; 15.3	Double integrals over general regions; Double integrals in polar coordinates	p.1048: 8, 14, 18, 30, 48, 52
3	15.3; 15.4	Double integrals in polar coordinates (continuation) Applications of double integrals	p.1054: 6, 8, 16, 26, 32, 36 p.1065: 8, 16, 28
4	15.5; 15.6	Surface area Triple integrals	p.1068: 4, 6, 8 p.1077: 2, 6, 12, 20
5	15.7; 15.8	Triple integrals in cylindrical and spherical coordinates	p.1083: 8, 18, 20, 24 p.1089: 8, 10, 22, 36, 42
6	15.9	Change of variables in multiple integrals Review Chapter 15	none
7	16.1, 16.2	Mid-term exam (Chapter 15) Vector fields. Line integrals	p.1100: 8, 12, 24, 26 p.1113: 4, 6, 24, 34
8	16.2; 16.3	Line integrals (continuation) Fundamental theorem for line integrals	p.1124: 8, 14, 22, 40 p.1134: 2, 8, 16, 24
9	16.4; 16.5	Green's Theorem Curl and Divergence	p.1142: 6, 10, 18, 22, 24 p.1149: 6, 10, 18, 24
10	16.6	Parametric surface	p.1160: 4, 6, 14, 20, 24, 34, 42, 48
11	16.7	Surface integrals	p.1172: 4, 6, 10, 18, 22, 24, 26
12	16.8; 16.9	Stokes' Theorem Divergence Theorem	p.1179: 4, 8, 14, 16 p.1185: 4, 8, 10, 12, 24
13		Review	

Approximate Schedule of Sections and Topics