MATH 366 (MATH 601AA) Complex Analysis I Fall 2015

Instructor:	Dr. A. Kokotov, Office: LB 921-05 (SGW), Phone: (514) 848-2424, Ext. 3471 Email: alexey.kokotov@concordia.ca
Office Hours:	Wednesdays, 13:15-14:30.
Texts:	 The material of the course is quite standard and can be found in almost any textbook in Complex Analysis. There are many good courses available in the internet, see e.g. 1. http://www.ima.umn.edu/~arnold/502.s97/complex.pdf 2. http://www.maths.manchester.ac.uk/~cwalkden/complex-analysis/complex_analysis.pdf 3. https://www.math.washington.edu/~marshall/math_536/Notes.pdf The following two classical textbooks written by outstanding specialists may serve as extremely useful additional reading and a source of inspiration for further studies (highly recommended!): 1. Lars V. Ahlfors, <i>Complex Analysis</i>, McGraw-Hill, 1966. 2. Raghavan Narasimhan, <i>Complex Analysis in One Variable</i>, Birkh¨auser, 1985.
Evaluation:	 There will be one mid-term test and a final exam. The final grade will be the higher of: a) The final exam (60%), the mid-term (20%) and weekly problem assignments (20%) b) The assignments (20%) and the final exam (80%) NOTE: THERE IS NO "100% FINAL" OPTION. Problem assignments will be given (almost) each week, to be submitted the following week; (hints to) solutions will be posted or discussed in class.

The following table gives an indication of the scope and *approximate* pace of the course.

Topics	No. of Weeks on Topic
Introduction	1
Analytic functions	2
Elementary functions	2
Complex integration	2
Taylor and Laurent series	2
Residue theorem and applications	2
Selected topics	1