Department of Mathematics & Statistics

Concordia University

MAST 218 Multivariable Calculus I Fall 2015

Instructor*:			
Office/Tel No.:			
Office Hours:			

Course Examiner: Dr. E. Duma

Prerequisites: Math 205 or an equivalent Calculus II course.

Multivariable Calculus, 8th Edition by J. Stewart, Cengage Learning, Text:

2015.

Assignments are *very important* as they indicate the level of difficulty **Assignments:**

> of the problems that the students are expected to solve. Therefore, every effort should be made to do and understand the assignment

problems. The assignments will be corrected and graded.

Web Resources: Many excellent animated illustrations to the text of the book are

> collected at the site www.stewartcalculus.com, see TEC (Tools for Enriching Calculus) for the edition 6. Regular use of this resource is

much recommended.

Use of Computer

It is optional but much recommended to install and use Maple or Algebra System: Mathematica. These computer tools can be used to verify and illustrate

any analytical results you get while doing your assignment problems.

Calculators: Electronic communication devices (including cell phones) are not

> allowed in the examination rooms. Only "Faculty Approved Calculators" SHARP EL-531 or CASIO FX-300MS) are allowed in the

examination rooms during the midterm exam and the final exam.

^{*}Students should get the above information from their instructor during class time. The instructor is the person to contact should there be any questions about the course.

Test: Midterm exam covering the first six weeks will be given in week 8.

Final Grade: The highest of the following:

• 90% final exam, 10% assignments.

• 30% midterm, 10% assignments, and 60% final exam.

Week	Sections	Topics	
1	10.1, 10.2	Parametric equations of curves.	
2	10.3, 10.4,	Areas and lengths in polar coordinates.	
	10.5	Conic sections.	
3	10.6, 11.10,	Conic sections in polar coordinates.	
	12.1	Taylor series: review. Three-dimensional coordinate systems.	
4	12.2, 12.3,	Vectors. Dot product. Cross product.	
	12.4		
5	12.5, 12.6	Equations of lines and planes.	
		Cylinders and quadric surfaces.	
6	13.1, 13.2	Vector functions and space curves. Derivatives and	
		integrals of vector functions.	
7	13.3, 13.4	Arc length and curvature of space curve.	
		Velocity and acceleration.	
8	14.1, 14.2	Functions of several variables, their limits and	
		continuity.	
9	14.3, 14.4	Partial derivatives. Tangent planes and linear	
		approximation.	
10	14.5, 14.6	Chain rule. Directional derivatives and gradient vector.	
11	14.7	Maximum and minimum values.	
12	14.8	Lagrange multipliers.	
13		Review	