PH. D. COMPREHENSIVE PART A GENERAL

Date	Time	Pages
May 2012	$\mathbf{3}$ hours	3

Special Instructions: Calculators permitted. Lined paper booklets.
Directions: Answer all 6 questions. Each problem is worth 10 marks.

READ THE QUESTIONS CAREFULLY !!! SHOW ALL WORK !!! JUSTIFY ALL STEPS !!! GOOD LUCK !!!

Problem 1 : (a) Prove that if $a+b=c$, then $\max \left\{s_{1} a, s_{2} b\right\} \geq \frac{1}{\left(\frac{1}{\left.s_{1}+\frac{1}{s_{2}}\right)} c \text {, for any }\right.}$ $a, b \geq 0, s_{1}, s_{2}>1$.
(b) We define the harmonic mean H and the geometric mean G as follows:

$$
H(a, b)=\frac{2}{\frac{1}{a}+\frac{1}{b}}, \quad G(a, b)=\sqrt{a \cdot b} \quad, a, b>0
$$

Prove that

$$
H \leq G
$$

(c) Let H, G be as above. Let $a_{0}=1, b_{0}=2$ and $a_{n+1}=H\left(a_{n}, b_{n}\right), b_{n+1}=$ $G\left(a_{n}, b_{n}\right), n=0,1,2, \ldots$. Prove that both sequences $\left\{a_{n}\right\}_{n \geq 0}$ and $\left\{b_{n}\right\}_{n \geq 0}$ are convergent and have the same limit. Can you find the limit?

Problem 2: (a) Let I denote the identity matrix. For square matrices A, B, prove that if the matrix $I-A B$ is invertible, then the matrix $I-B A$ is also invertible.
(b) Let S and T be linear subspaces of \mathbb{R}^{n}. Prove: If

$$
\operatorname{dim}(\operatorname{Span}(S \cup T))=\operatorname{dim}(S \cap T)+1
$$

then one of the subspaces is a subset of the other. $\operatorname{Span}(W)$ is the smallest linear subspace containing set W.
(c) Let \mathcal{M}^{n} denote the set of all $n \times n$ real matrices. Let $A \in \mathcal{M}^{n}$ be of rank $0 \leq k \leq n$. Let $\mathcal{L}=\left\{B \in \mathcal{M}^{n}: B A=0\right\}$ and $\mathcal{R}=\left\{C \in \mathcal{M}^{n}: A C=0\right\}$. Show that \mathcal{L} and \mathcal{R} are linear spaces and compute their dimensions.
(d) Compute the value of the determinant of the 3×3 complex matrix A, provided that $\operatorname{tr}(A)=1, \operatorname{tr}\left(A^{2}\right)=-3, \operatorname{tr}\left(A^{3}\right)=4$. [Here $\operatorname{tr}(A)$ denotes the the trace, that is, the sum of the diagonal entries of the matrix A.]

Problem 3: Let $f: X \rightarrow Y$ be a function between two metric spaces. Are the following statements true or false? Give a sketch of a proof or a counterexample.
(a) If f is continuous and $f(K)$ is complete in Y, then K is complete in X.
(b) If f is continuous and K is complete in X, then $f(K)$ is complete in Y.
(c) If X is compact and f is continuous, then for any open $U \subset X$ the image $f(U) \subset Y$ is also open.
(d) If f is continuous and $f(G) \subset Y$ is dense in Y, then $(G) \subset X$ is also dense in X.

Problem 4 :

(a) Prove: If both $f=u+i v$ is analytic in an open neighbourhood of z_{0} and $f^{\prime}\left(z_{0}\right) \neq 0$, then the lines $u=$ const and $v=$ const are perpendicular at z_{0}.
(b) (i) For $A>0$ show

$$
\int_{0}^{\pi} \exp (-A \sin t) d t<\pi \frac{1}{A}
$$

Hint: Show first that $t \in(0, \pi / 2)$ implies $\sin t>2 t / \pi$.
(ii) Prove

$$
\int_{0}^{+\infty} \frac{\cos x}{x^{2}+a^{2}} d x=\frac{\pi}{2 a} e^{-a} \quad, \quad a>0
$$

Problem 5:

Let us define the space $X=\{z \in \mathbb{C}:|z| \geq 1\}$ and a function $d\left(z_{1}, z_{2}\right)$ as follows:
(i) if $\arg z_{1}=\arg z_{2}$, then $d\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right|$;
(ii) if $\arg z_{1} \neq \arg z_{2}$, then
$d\left(z_{1}, z_{2}\right)=\left|z_{1}\right|-1+\left(\right.$ length of the shorter arc between $\frac{z_{1}}{\left|z_{1}\right|}$ and $\left.\frac{z_{2}}{\left|z_{2}\right|}\right)+\left|z_{2}\right|-1$.
(a) Show that d defines metric on X (for triangle inequality you can consider just one case of possible positioning of z_{1}, z_{2}, z_{3});
(b) Sketch the balls: $B(3,1), B(i, 1), B(3 / 2,1)$;
(c) Is (X, d) a complete metric space?
(d) Is (X, d) a compact metric space?
(e) Is (X, d) a separable metric space?
(f) Let ρ be the standard Euclidean metric on X. Is the identity a continuous map from (X, ρ) onto (X, d) ?

Problem 6: Consider the measure space $\{\mathbb{R}, \mathcal{L}, m\}$, where m is Lebesgue measure.
(a) State Fatou's lemma.
(b) Let $f \in L^{1}(\mathbb{R}, \mathcal{L}, m)$. Prove that

$$
\forall_{\varepsilon>0} \exists \delta>0 \forall_{B \in \mathcal{L}} m(B)<\delta \Rightarrow \int_{B}|f| d m<\varepsilon,
$$

i.e., Lebesgue integral of f is absolutely continuous with respect to Lebesgue measure m.
(c) Assume that $f_{n}, g_{n} \in L^{1}(\mathbb{R}, m), f_{n} \rightarrow 0$ and $g_{n} \rightarrow 0$ almost everywhere, as $n \rightarrow+\infty$.

Prove

$$
\lim _{n \rightarrow+\infty} \int_{A} \frac{2 f_{n}(x) g_{n}(x)}{1+f_{n}^{2}(x)+g_{n}^{2}(x)} d m(x)=0
$$

for any set $A \subset \mathbb{R}$ of finite measure. Show by an example that this does not extend to the whole \mathbb{R}.

