PH. D. COMPREHENSIVE PART A GENERAL

| Date | Time | Pages |
| :---: | :---: | :---: |
| June 2013 | $\mathbf{3}$ hours | $\mathbf{3}$ |

Special Instructions: Calculators permitted. Lined paper booklets.
Directions: Answer all 6 questions. Each problem is worth 10 marks.

## READ THE QUESTIONS CAREFULLY !!! SHOW ALL WORK !!! JUSTIFY ALL STEPS !!! GOOD LUCK !!!

Problem 1: Consider the measure space $\{\mathbb{R}, \mathcal{L}, m\}$, where $m$ is Lebesgue measure.
(a) State Lebesgue Monotone Convergence theorem.
(b) Let $\left\{f_{n}\right\}$ be a sequence of measurable functions satisfying $\left|f_{n}\right| \leq g$ almost everywhere for all $n \geq 1$, where $g$ is an integrable function. Prove:

$$
\int_{\mathbb{R}} \liminf _{n \rightarrow \infty} f_{n} d m \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d m
$$

(c) Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a Lebesgue integrable function such that $\int_{0}^{t} f d m=0$ for all $t \geq 0$. Prove that $f=0$ almost everywhere.
(d) Calculate

$$
\lim _{n \rightarrow+\infty} \int_{0}^{+\infty}\left(\frac{\sin ^{n}\left(x^{2}\right)}{x^{2}}\right) d m(x)
$$

if it exists.

Problem 2: Let $(X, d)$ be a metric space.
(a) Prove:

$$
|d(x, y)-d(z, w)| \leq d(x, z)+d(y, w)
$$

(b) Prove: If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences in $X$, then the sequence $\left\{d\left(x_{n}, y_{n}\right)\right\}$ converges in $\mathbb{R}$.
(c) If $(X, d)$ is compact, then it is complete.
(d) If $(X, d)$ is compact, then it is separable (there exists a countable dense subset).

Problem 3: (a) Let the $(n+m) \times(n+m)$ matrix $M$ satisfy condition:

$$
m_{i, j}=0, \text { for } 1 \leq i, j \leq n \text { and } n+1 \leq i, j \leq n+m
$$

Prove that if $\lambda$ is an eigenvalue of $M$, then $-\lambda$ also is the eigenvalue of $M$.
Examples:

$$
M_{1}=\left[\begin{array}{ccc}
0 & a & b \\
c & 0 & 0 \\
d & 0 & 0
\end{array}\right], \quad M_{2}=\left[\begin{array}{cccc}
0 & 0 & a & b \\
0 & 0 & c & d \\
e & f & 0 & 0 \\
g & h & 0 & 0
\end{array}\right]
$$

(b)
(b1) Prove or disprove: If two $5 \times 5$ matrices have the same characteristic polynomial and the same minimal polynomial, they have to be similar.
(b2) Prove or disprove: (i) the set $V$ of real valued differentiable functions defined on the reals form a vector space over the reals.
(ii) the derivative is a linear transformation from $V$ to $V$.
(b3) True or false: if $A$ is a $3 \times 3$ matrix that has three different eigenvalues, then $A$ is diagonalizable.
(b4) True or false: if the set $\{u, v, w\}$ is linearly independent, then so is

$$
\{u, u-v, u+v+w\}
$$

(b5) Let $V$ be the set of real $2 \times 2$ matrices. Let $A$ be an element of $V$. Decide whether or not the map $B \mapsto A B$ is a linear operator on $V$.
(b6) True of false: A linear transformation $T: V \rightarrow V$ that is onto, must be an isomorphism.
(c) An $n \times n$ matrix $A$ has the property: each row contains only two non-zero elements, one on the diagonal which is larger than 1 and another outside the diagonal equal to 1 . Can $A$ be singular?

Problem 4: (a) Let $(X, d)$ be a metric space. For any two $A, B \subset X$ we define

$$
D(A, B)=\inf _{x \in A, y \in B} d(x, y)
$$

Prove that $X$ is compact if and only if $D(A, B)>0$ for any two closed disjoint subsets of $X$.
(b) Let us consider metric space $(\mathbb{N}, d)$ with the metric (do not prove it is a metric):

$$
d(n, m)= \begin{cases}1+\frac{1}{n+m} & , \text { for } n \neq m \\ 0 & , \text { for } n=m\end{cases}
$$

(b1) Prove that $X$ is complete.
(b2) Consider closed balls $B_{n}=B\left(n, 1+\frac{1}{2 n}\right)$. Show that they form a decreasing sequence of sets ( $B_{n+1} \subset B_{n}$ ) with empty intersection.

Problem 5: (a) We know that $x+e^{x}=y+e^{y}$. Does this imply that $\sin x=\sin y$ ?
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy: $\lim _{x \rightarrow \infty} f(x)=c$ and $\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{R} f(t) d t=2013$. Prove that $c=2013$.

If we change 2013 to 0 , would this imply that $c=0$ ?
(c) Function $f:[0, \pi] \rightarrow[0,1]$ is continuous. Show that there exists an $x_{0} \in[0, \pi]$ such that $f\left(x_{0}\right)=\sin \left(x_{0}\right)$.
(d1) Let us assume that

$$
\lim _{n \rightarrow \infty}\left(\left(a_{1}+1\right)\left(a_{2}+1\right) \cdots\left(a_{n}+1\right)\right)=g, 0<g \leq+\infty
$$

Prove that

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{\left(a_{1}+1\right)\left(a_{2}+1\right) \cdots\left(a_{n}+1\right)}=1-\frac{1}{g} .
$$

Hint: Use the trick similar to that used in calculating the sum $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, i.e., representing $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
(d2) Calculate

$$
\sum_{n=1}^{\infty} \frac{n-1}{n!}
$$

## Problem 6 :

(a) Calculate the integral

$$
\int_{C(0, R)} \frac{f(z)}{(z-a)(z-b)} d z
$$

where $C(0, R)$ is the circle of radius $R$ centered at the origin, $|a|<R,|b|<R$ and $f$ is analytic in $\mathbb{C}$. Use it to prove Liouville's theorem : A function analytic and bounded in $\mathbb{C}$ is constant.
(b) Assume that $f$ is analytic and not constant in the disk $K(0, R)$ of radius $R$ centered at the origin. Define the function

$$
M(r)=\sup _{|z|=r}|f(z)|
$$

Prove that $M(r)$ is strictly increasing on $(0, R)$.
(c) Prove that $f(z)=z^{8}+3 z^{3}+7 z+5$ has exactly 2 zeros in the positive quadrant $(\Re z>0, \Im z>0)$.
(d) Evaluate:

$$
\int_{-\infty}^{+\infty} \frac{x \sin x}{x^{2}+9} d x
$$

