CONCORDIA UNIVERSITY Department of Mathematics and Statistics

Date	Time	Pages
June 2013	3 hours	3

PH. D. COMPREHENSIVE PART A GENERAL

Special Instructions: Calculators permitted. Lined paper booklets. **Directions:** Answer all 6 questions. Each problem is worth 10 marks.

READ THE QUESTIONS CAREFULLY !!! SHOW ALL WORK !!! JUSTIFY ALL STEPS !!! GOOD LUCK !!!

Problem 1: Consider the measure space $\{\mathbb{R}, \mathcal{L}, m\}$, where *m* is Lebesgue measure.

(a) State Lebesgue Monotone Convergence theorem.

(b) Let $\{f_n\}$ be a sequence of measurable functions satisfying $|f_n| \leq g$ almost everywhere for all $n \geq 1$, where g is an integrable function. Prove:

$$\int_{\mathbb{R}} \liminf_{n \to \infty} f_n dm \le \liminf_{n \to \infty} \int_{\mathbb{R}} f_n dm$$

(c) Let $f: [0, +\infty) \to \mathbb{R}$ be a Lebesgue integrable function such that $\int_0^t f dm = 0$ for all $t \ge 0$. Prove that f = 0 almost everywhere.

(d) Calculate

$$\lim_{n \to +\infty} \int_0^{+\infty} \left(\frac{\sin^n(x^2)}{x^2} \right) dm(x) \; ,$$

if it exists.

Problem 2 : Let (X, d) be a metric space.

(a) Prove:

$$|d(x,y) - d(z,w)| \le d(x,z) + d(y,w)$$
.

(b) Prove: If $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in X, then the sequence $\{d(x_n, y_n)\}$ converges in \mathbb{R} .

(c) If (X, d) is compact, then it is complete.

(d) If (X, d) is compact, then it is separable (there exists a countable dense subset).

Problem 3 : (a) Let the $(n+m) \times (n+m)$ matrix M satisfy condition:

 $m_{i,j} = 0$, for $1 \le i, j \le n$ and $n + 1 \le i, j \le n + m$.

Prove that if λ is an eigenvalue of M, then $-\lambda$ also is the eigenvalue of M. Examples:

$$M_1 = \begin{bmatrix} 0 & a & b \\ c & 0 & 0 \\ d & 0 & 0 \end{bmatrix} , \qquad M_2 = \begin{bmatrix} 0 & 0 & a & b \\ 0 & 0 & c & d \\ e & f & 0 & 0 \\ g & h & 0 & 0 \end{bmatrix} .$$

(b)

(b1) Prove or disprove: If two 5×5 matrices have the same characteristic polynomial and the same minimal polynomial, they have to be similar.

(b2) Prove or disprove: (i) the set V of real valued differentiable functions defined on the reals form a vector space over the reals.

(ii) the derivative is a linear transformation from V to V.

(b3) True or false: if A is a 3×3 matrix that has three different eigenvalues, then A is diagonalizable.

(b4) True or false: if the set $\{u, v, w\}$ is linearly independent, then so is

$$\{u, u - v, u + v + w\}$$
.

(b5) Let V be the set of real 2×2 matrices. Let A be an element of V. Decide whether or not the map $B \mapsto AB$ is a linear operator on V.

(b6) True of false: A linear transformation $T: V \to V$ that is onto, must be an isomorphism.

(c) An $n \times n$ matrix A has the property: each row contains only two non-zero elements, one on the diagonal which is larger than 1 and another outside the diagonal equal to 1. Can A be singular?

Problem 4 : (a) Let (X, d) be a metric space. For any two $A, B \subset X$ we define

$$D(A,B) = \inf_{x \in A, y \in B} d(x,y) .$$

Prove that X is compact if and only if D(A, B) > 0 for any two closed disjoint subsets of X.

(b) Let us consider metric space (\mathbb{N}, d) with the metric (do not prove it is a metric):

$$d(n,m) = \begin{cases} 1 + \frac{1}{n+m} &, \text{ for } n \neq m ;\\ 0 &, \text{ for } n = m . \end{cases}$$

(b1) Prove that X is complete.

(b2) Consider closed balls $B_n = B(n, 1 + \frac{1}{2n})$. Show that they form a decreasing sequence of sets $(B_{n+1} \subset B_n)$ with empty intersection.

Problem 5 : (a) We know that $x + e^x = y + e^y$. Does this imply that $\sin x = \sin y$?

(b) Let $f : \mathbb{R} \to \mathbb{R}$ satisfy: $\lim_{x\to\infty} f(x) = c$ and $\lim_{R\to\infty} \frac{1}{R} \int_0^R f(t) dt = 2013$. Prove that c = 2013.

If we change 2013 to 0, would this imply that c = 0?

(c) Function $f : [0, \pi] \to [0, 1]$ is continuous. Show that there exists an $x_0 \in [0, \pi]$ such that $f(x_0) = \sin(x_0)$.

(d1) Let us assume that

$$\lim_{n \to \infty} ((a_1 + 1)(a_2 + 1) \cdots (a_n + 1)) = g , \ 0 < g \le +\infty .$$

Prove that

$$\sum_{n=1}^{\infty} \frac{a_n}{(a_1+1)(a_2+1)\cdots(a_n+1)} = 1 - \frac{1}{g} \,.$$

Hint: Use the trick similar to that used in calculating the sum $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, i.e., representing $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$.

(d2) Calculate

$$\sum_{n=1}^{\infty} \frac{n-1}{n!}$$

Problem 6:

(a) Calculate the integral

$$\int_{C(0,R)} \frac{f(z)}{(z-a)(z-b)} dz \; ,$$

where C(0, R) is the circle of radius R centered at the origin, |a| < R, |b| < R and f is analytic in \mathbb{C} . Use it to prove Liouville's theorem : A function analytic and bounded in \mathbb{C} is constant.

(b) Assume that f is analytic and not constant in the disk K(0, R) of radius R centered at the origin. Define the function

$$M(r) = \sup_{|z|=r} |f(z)|$$
.

Prove that M(r) is strictly increasing on (0, R).

(c) Prove that $f(z) = z^8 + 3z^3 + 7z + 5$ has exactly 2 zeros in the positive quadrant $(\Re z > 0, \Im z > 0)$.

(d) Evaluate:

$$\int_{-\infty}^{+\infty} \frac{x \sin x}{x^2 + 9} dx$$