PH. D. COMPREHENSIVE PART A GENERAL

Date	Time	Pages
June 2011	$\mathbf{3}$ hours	$\mathbf{3}$

Special Instructions: Calculators permitted. Lined paper booklets.
Directions: Answer 6 of the 8 questions at your choice. Each problem is worth 10 marks.
READ THE QUESTIONS CAREFULLY !!! SHOW ALL WORK !!! JUSTIFY ALL STEPS !!! GOOD LUCK !!!

Problem 1 : (a) Let

$$
f(x)=a_{1} x^{n_{1}}+a_{2} x^{n_{2}}+a_{3} x^{n_{3}}+a_{4} x^{n_{4}},
$$

for non-zero $a_{1}, a_{2}, a_{3}, a_{4}$ and pairwise different non-negative integers $n_{1}, n_{2}, n_{3}, n_{4}$. Show that f has at most 3 zeros in the open interval $(0,+\infty)$.
(b) Consider the series

$$
S(a)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(1+a)^{n}} \quad, \quad a \geq 0
$$

(i) Prove that $S(a)$ converges absolutely for all $a>0$ and conditionally for $a=0$.
(ii) Prove that $S(a)$ converges uniformly on $[0,+\infty)$.
(iii) Find explicitly $S(a)$.

Problem 2: A matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is called skew-symmetric if $a_{i j}=-a_{j i}$ for all $1 \leq i, j \leq n$.
(a) Show that if A is skew-symmetric and n is odd, then $\operatorname{det} A=0$;
(b) Show that if A is skew-symmetric and n is even, then $\operatorname{det} A=\operatorname{det} B$, where $b_{i j}=c+a_{i j}$, for all $1 \leq i, j \leq n$ and c is a constant.
(c) Let

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & i
\end{array}\right]
$$

Find an unitary matrix U and a diagonal matrix D such that $U^{-1} A U=D$. (Here $i=\sqrt{-1}$.)

Problem 3: Let $f: X \rightarrow Y$ be a function between two metric spaces. Are the following statements true or false? Give a sketch of a proof or a counterexample.
(a) If for any open set $U \subset X$ the set $f(U) \subset Y$ is also open, then f is continuous.
(b) If f is continuous and $U \subset Y$ is open, then $f^{-1}(U) \subset X$ is also open.
(c) If X is compact and f is continuous, then for any closed $F \subset X$ the image $f(F) \subset Y$ is also closed.
(d) If f is continuous and $G \subset X$ is nowhere dense, then $f(G) \subset Y$ is also nowhere dense.

Problem 4 :

(a) Prove: If both f and \bar{f} are analytic in an open connected region Ω, then they are constant in Ω.
(b) Prove that equation $z^{5}=\frac{1}{10} z^{10}+\frac{1}{15} z^{15}$ has exactly 5 solutions in the unit disk. Estimate the absolute value of the solution with the smallest non-zero modulus.
(c) Evaluate

$$
\int_{\gamma} \frac{z^{2}+1}{z\left(z^{2}+4\right)} d z \quad, \quad \gamma(t)=r e^{2 \pi i t} \quad, 0 \leq t \leq 1
$$

for (i) $r=1$ and (ii) $r=3$.

Problem 5:

(a) Let $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right\}$ be two different bases of a linear space V. Show that one can find two vectors y_{i} and y_{j} of the second basis such that the collections $\left\{y_{i}, y_{j}, x_{3}, \ldots, x_{n}\right\}$ and $\left\{x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right\} \backslash\left\{y_{i}, y_{j}\right\}$ are again two bases of a linear space V.
(b) Prove that if $\left|a_{i i}\right|>\sum_{k \neq i}\left|a_{k i}\right|$ for $i=1,2, \ldots, n$, then the matrix $A=$ $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is invertible.
(c) Let V be an inner product vector space, and let $y, z \in V$. Define the linear operator $T: V \rightarrow V$ by $T(x)=\langle x, y\rangle z$, for all $x \in V$. Show that the adjoint operator T^{*} exists and find an explicit expression for it.

Problem 6 : Consider the measure space $\{\mathbb{R}, \mathcal{L}, m\}$, where m is Lebesgue measure.
(a) State Fatou's lemma.
(b) Sketch the proof of the following statement: If $f \in L^{1}(\mathbb{R}, m)$, then for any $\varepsilon>0$ there exists a continuous function g vanishing outside a finite interval and such that

$$
\int_{\mathbb{R}}|f-g| d m<\varepsilon
$$

State all the results you are using.
(c) Assume that $f_{n} \in L^{1}(\mathbb{R}, m)$ and $f_{n} \rightarrow 0$ almost everywhere, as $n \rightarrow+\infty$.

Prove

$$
\lim _{n \rightarrow+\infty} \int_{\mathbb{R}} \sin \left(f_{n}(x)\right) e^{-x^{2}} d m(x)=0 .
$$

Problem 7 :

(a) Let $C^{1}[0,1]$ be the space of continuously differentiable functions on $[0,1]$ (at the endpoints we assume the existence of one-sided derivatives), with the norm

$$
\|f\|_{C^{1}}=\sup _{x \in[0,1]}|f(x)|+\sup _{x \in[0,1]}\left|f^{\prime}(x)\right| .
$$

(Do not prove that this is a norm.) Let $F: C^{1}[0,1] \rightarrow C^{1}[0,1]$ be defined by

$$
F(f)(x)=\sin (x) f(x) .
$$

Show that F is well defined and continuous.
(b) Prove that every totally bounded space is separable. Is every separable metric space also totally bounded?

Problem 8: Let $X=\{n \in \mathbb{Z}: n \geq 1\}$ and let (n, m) denote the greatest common divisor of n and m.
(i) Prove that for any $n, m, k \in X$ we have $(n, k) \cdot(m, k) \leq k \cdot(n, m)$.

Let $d(n, m)=\log \frac{n \cdot m}{(n, m)^{2}}$.
(ii) Prove that (X, d) is a metric space.
(iii) Prove that (X, d) is unbounded and discrete.
(iv) Find the closed ball $\bar{B}(6, \log (4))$ with center 6 and radius $\log (4)$.
(v) Is the metric d equivalent to the standard metric $\rho(n, m)=|n-m|$?
(vi) Is the identity a continuous map between (X, d) and (X, ρ) ?

