Department of Mathematics and Statistics
 Concordia University
 Ph. D. Comprehensive Examination - Part A General

Date: September 2010
Time Allowed: 3 hours
Number of Pages: 3
Directions: Answer 6 of the 8 questions at your choice. Each problem is worth 10 marks.

Problem 1:

(a) Prove that if f is continuous on a closed interval $[a, b]$, differentiable on the open interval (a, b) and if $f(a)=f(b)=0$, then for any real α there is a point $x \in(a, b)$ such that

$$
\alpha f(x)+f^{\prime}(x)=0 .
$$

(b) Show that the equation $3^{x}+4^{x}=5^{x}$ has exactly one real root.
(c) Consider the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} e^{-n x}}{\sqrt{n+x^{2}}}
$$

Prove that it converges uniformly on $[0,+\infty)$. Prove that the series of moduluses converges pointwise on $(0,+\infty)$.

Problem 2:

(a) Let A be asymmetric matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$. Show that

$$
\lambda_{k}=\min _{\substack{S \\ \operatorname{dim}(S)=k}}\left(\max _{\substack{x \in S \\\|x\|=1}} x^{T} A x\right)
$$

where S are subspaces of \mathbb{R}^{n}.
(b) Let $A=\left[\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$. Find an orthogonal matrix U and a diagonal matrix D such that $U^{-1} A U=D$.
(c) Let V and W be finite dimensional subspaces of a vector space. Prove that

$$
\operatorname{dim}(V+W)=\operatorname{dim}(V)+\operatorname{dim}(W)-\operatorname{dim}(V \cap W)
$$

(Hint: start with a basis of $V \cap W$.)
Problem 3: Let $f: X \rightarrow Y$ be a function. Are the following statements true or false? Give a sketch of a proof or a counterexample.
(a) If for any close set $F \subset X$ the set $f(F) \subset Y$ is also closed, then f is continuous.
(b) If f is continuous and $F \subset X$ is closed, then $f(F) \subset Y$ is also closed.
(c) If X is compact and f is continuous, then for any closed $F \subset X$ the image $f(F) \subset Y$ is also closed.
(d) If f is continuous and $G \subset X$ is nowhere dense, then $f(G) \subset Y$ is also nowhere dense.

Problem 4:

(a) Show that the equation

$$
5 z^{n}=e^{z}, n \geq 1
$$

has no solutions in the annulus $1<|z|<2$. Show that it has at most a finite number of solutions in any horizontal strip $a<\Im z<b$ and in any vertical strip $a<\Re z<b$.
(b) Let

$$
f(z)=\frac{1}{\left(1+z^{2}\right)^{2}}
$$

(i) What is the radius of convergence of the Taylor expansion of f centered at $z_{0}=0$. You do not have to produce the expansion.
(ii) Expand f into Laurent series centered at $z_{0}=i$ (a few terms). In what domain is this expansion valid?
(iii) Use the residue theorem to evaluate

$$
\int_{-\infty}^{+\infty} \frac{1}{\left(1+x^{2}\right)^{2}} d x
$$

Problem 5:

(a) Real functions f_{1}, f_{2} are defined on interval (a, b). For any real constants c_{1}, c_{2} the function $c_{1} f_{1}+c_{2} f_{2}$ is of constant sign. Prove that f_{1}, f_{2} are linearly dependent.
(b) How many automorphisms there are
(i) from \mathbb{Q} to \mathbb{Q} (field of rational numbers);
(ii) from \mathbb{R} to \mathbb{R} (field of real numbers);
(iii) from \mathbb{C} to \mathbb{C} (field of complex numbers).
(c) Are the following statements true or false? Give a sketch of a proof or a counterexample.
(i) A compact subspace of the reals is closed.
(ii) A closed subspace of the reals is compact.
(iii) A closed subspace of a compact metric space is compact.

Problem 6:

(a) Prove that the only solution to the system

$$
\left\{\begin{aligned}
\frac{1}{2} x_{1} & =a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
\frac{1}{2} x_{2} & =a_{21} x_{1}+\cdots+a_{2 n} x_{n} \\
& \vdots \\
\frac{1}{2} x_{n} & =a_{n 1} x_{1}+\cdots+a_{n n} x_{n}
\end{aligned}\right.
$$

with integer coefficients $\left\{a_{i j}\right\}_{1 \leq i, j \leq n}$ is $x_{1}=x_{2}=\cdots=x_{n}=0$.
(b) The elements $u_{1}, u_{2}, v_{1}, v_{2}$ of a group G satisfy identities

$$
u_{1} v_{1}=v_{1} u_{1}=u_{2} v_{2}=v_{2} u_{2}
$$

and

$$
u_{1}^{p_{1}}=u_{2}^{p_{1}}=v_{1}^{p_{2}}=v_{2}^{p_{2}}=e,
$$

where p_{1}, p_{2} are relatively prime positive integers. Prove that

$$
u_{1}=u_{2} \quad \text { and } \quad v_{1}=v_{2} .
$$

(d) Is the following statement true or false? Give a sketch of a proof or a counterexample.
Two matrices with the same minimal polynomial and the same characteristic polynomial are similar.

Problem 7: Consider the measure space $\{\mathbb{R}, \mathcal{L}, m\}$. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive measurable functions.
(a) State Fatou's lemma.
(b) Prove that if $f_{n} \leq f_{n+1}$ for all $n \geq 1$ and $f_{n} \rightarrow f$ a.e., then $\int f_{n} d m \rightarrow \int f d m$.
(c) Prove that

$$
\int \sum_{n=1}^{\infty} f_{n} d m=\lim _{k \rightarrow \infty} \int \sum_{n=1}^{k} f_{n} d m
$$

(d) State Lebesgue dominated convergence theorem.
(e) Assume that $f_{n} \in L^{1}([0,1])$ and $f_{n} \rightarrow 0$ almost everywhere, as $n \rightarrow+\infty$.

Prove

$$
\lim _{n \rightarrow+\infty} \int_{0}^{1} \sin \left(f_{n}(x)\right) d x=0
$$

Is the same true if we exchange $[0,1]$ for the whole line \mathbb{R} ?

Problem 8: Let $C[0,1]$ be the space of all continuous functions on $[0,1]$ and let $M[0,1]$ be the space of all probability measures on $[0,1]$. Let $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}_{n=1}^{\infty}$ be a set of functions dense in the unit ball $\left\{f \in C[0,1]: \sup _{x}|f(x)| \leq 1\right\}$ of $C[0,1]$. (Why such a countable set exists?) For any $\mu_{1}, \mu_{2} \in M[0,1]$ let us define

$$
d\left(\mu_{1}, \mu_{2}\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left|\mu_{1}\left(f_{n}\right)-\mu_{2}\left(f_{n}\right)\right|
$$

where $\mu_{i}(f)=\int_{0}^{1} f(x) d \mu_{i}(x)$.
(a) Prove that $d(\cdot, \cdot)$ is a metric on $M[0,1]$. (You may need the information that if $\mu(f)=0$ for all $f \in C[0,1]$, then $\mu=0$. You do not have to prove this.)
(b) Prove that the convergence in metric d is equivalent to the vague (weak) convergence of measures:

$$
d\left(\mu_{n}, \mu\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \Longleftrightarrow \forall_{f \in C[0,1]} \mu_{n}(f) \underset{n \rightarrow \infty}{\longrightarrow} \mu(f) .
$$

(d) Let us define measures μ_{n} by

$$
\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta(i / n), \quad n=2,3,4, \ldots
$$

where $\delta(x)$ is Dirac's measure at x, i.e.,

$$
\delta(x)(\{x\})=1 \text { and } \delta(x)([0,1] \backslash\{x\})=0 .
$$

Show that μ_{n} converge weakly to Lebesgue measure, as $n \rightarrow \infty$.

Read the problems carefully !
 Show All Work!
 Justify All Answers! Good Luck !!!

