Skip to main content
Thesis defences

PhD Oral Exam - Bahareh Pourbabaee, Electrical and Computer Engineering

Robust Sensor Fault Detection and Isolation of Gas Turbine Engines


Date & time
Thursday, December 8, 2016
10 a.m. – 1 p.m.
Cost

This event is free

Organization

School of Graduate Studies

Contact

Sharon Carey
514-848-2424, ext. 3802

Where

Engineering, Computer Science and Visual Arts Integrated Complex
1515 St. Catherine W.
Room EV 3.309

Wheel chair accessible

Yes

When studying for a doctoral degree (PhD), candidates submit a thesis that provides a critical review of the current state of knowledge of the thesis subject as well as the student’s own contributions to the subject. The distinguishing criterion of doctoral graduate research is a significant and original contribution to knowledge.

Once accepted, the candidate presents the thesis orally. This oral exam is open to the public.

Abstract

An effective fault detection and isolation (FDI) technology can play a crucial role in improving the system availability, safety and reliability as well as reducing the risks of catastrophic failures. In this thesis, the robust sensor FDI problem of gas turbine engines is investigated and different novel techniques are developed to address the effects of parameter uncertainties, disturbances as well as process and measurement noise on the performance of FDI strategies. The efficiencies of proposed techniques are investigated through extensive simulation studies for the single spool gas turbine engine that is previously developed and validated using the GSP software. The gas turbine engine health degradation is considered in various forms in this thesis. First, it is considered as a part of the engine dynamics that is estimated off-line and updated periodically for the on-board engine model. Second, it is modeled as the time-varying norm-bounded parameter uncertainty that affects all the system state-space matrices and third as an unknown nonlinear dynamic that is approximated by the use of a dynamic recurrent neural network.

In the first part of the thesis, we propose a hybrid Kalman filter (HKF) scheme that consists of a single nonlinear on-board engine model (OBEM) augmented with piecewise linear (PWL) models constituting as the multiple model (MM) based estimators to cover the entire engine operating regime. We have integrated the generalized likelihood ratio (GLR)-based method with our MM-based scheme to estimate the sensor fault severity under various single and concurrent fault scenarios. In order to ensure the reliability of our proposed HKF-based FDI scheme during the engine life cycle, it is assumed that the reference baselines are periodically updated for the OBEM health parameters.

In the second part of the thesis, a novel robust sensor FDI strategy using the MM-based approach is proposed that remains robust with respect to both time-varying parameter uncertainties and process and measurement noise. The scheme is composed of robust Kalman filters (RKF) that are constructed for mul- tiple PWL models. The parameter uncertainty is modeled by using a time-varying norm bounded admissible structure that affects all the PWL state space matrices. The robust Kalman filter gain matrices are designed by solving two algebraic Riccati equations (ARE) that are expressed as two linear matrix inequality (LMI) feasibil- ity conditions. The main objective is to propose a robust filter that satisfies the overall performance requirements and is not affected by system perturbations. The requirements include a quadratically stable filter that ensures bounded estimation error variances having predefined values.

In the third part of the thesis, a novel hybrid approach is proposed to improve the robustness of FDI scheme with respect to different sources of uncertainties. For this purpose, a dynamic recurrent neural network (DRNN) is designed to ap- proximate the gas turbine engine uncertainty due to the health degradations. The proposed DRNN is trained offline by using the extended Kalman filter (EKF) al- gorithm for an engine with different levels of uncertainty, but with healthy sensors. The convergence of EKF-based DRNN training algorithm is also investigated. Then, the trained DRNN with the fixed parameters and topology is integrated with our online model-based FDI algorithm to approximate the uncertainty terms of the real engine. In this part, the previously proposed HKF and RKF are integrated with the trained DRNN to construct the hybrid FDI structure.


Back to top

© Concordia University