Skip to main content
Thesis defences

PhD Oral Exam - Hamed Badihi, Mechanical Engineering

Monitoring, Diagnosis, and Fault-Tolerant Control of Wind Turbines


Date & time
Monday, May 30, 2016
3 p.m. – 6 p.m.
Cost

This event is free

Organization

School of Graduate Studies

Contact

Sharon Carey
514-848-2424, ext. 3802

Where

Engineering, Computer Science and Visual Arts Integrated Complex
1515 St. Catherine W.
Room EV 1.162

Wheel chair accessible

Yes

When studying for a doctoral degree (PhD), candidates submit a thesis that provides a critical review of the current state of knowledge of the thesis subject as well as the student’s own contributions to the subject. The distinguishing criterion of doctoral graduate research is a significant and original contribution to knowledge.

Once accepted, the candidate presents the thesis orally. This oral exam is open to the public.

Abstract

Governments across the globe are funding renewable energy initiatives like wind energy to diversify energy resources and promote a greater environmental responsibility. Such an opportunity requires state-of-the-art technologies to realize the required levels of efficiency, reliability, and availability in modern wind turbines. The key enabling technologies for ensuring reliable and efficient operation of modern wind turbines include advanced condition monitoring and diagnosis together with fault-tolerant and efficiency/optimal control. Application of the mentioned technologies in wind turbines constitutes a quite active and, in many aspects, interdisciplinary investigation area that ensures a guaranteed increasing future market for wind energy. In particular, this thesis aims to design and develop novel condition monitoring, diagnosis and fault-tolerant control schemes with application to wind turbines at both individual wind turbine and entire wind farm (i.e., a group of wind turbines) levels. Therefore, the research of the thesis provides advanced levels of monitoring, diagnosis and fault tolerance capabilities to wind turbines in order to ensure their efficient and reliable performance under both fault-free and faulty conditions. Finally, the proposed schemes and strategies are verified by a series of simulations on well-known wind turbine and wind farm benchmark models in the presence of wind turbulences, measurement noises, and different realistic fault scenarios.


Back to top

© Concordia University