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Abstract 

This paper examines option pricing in a universe in which it is assumed 

that markets are incomplete. It derives multiperiod discrete time option 

bounds based on stochastic dominance considerations for a risk-averse 

investor holding only the underlying asset, the riskless asset and (possibly) 

the option for any type of underlying asset distribution, discrete or 

continuous. It then considers the limit behavior of these bounds for special 

categories of such distributions as trading becomes progressively more 

dense, tending to continuous time. It is shown that these bounds nest as 

special cases most, if not all, existing arbitrage- and equilibrium-based 

option pricing models. Thus, when the underlying asset follows a 

generalized diffusion both bounds converge to a single value. For jump-

diffusion processes, stochastic volatility models, and GARCH processes 

the bounds remain distinct and define several new option pricing results 

containing as special cases the arbitrage-based results.    
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1. Introduction 

There have now been more than thirty years since the publication of the seminal Black 

and Scholes (1973) and Merton (1973) studies that established the foundations of modern 

option pricing theory. The significance of these studies lay as much in the arbitrage 

valuation methodology that they introduced as in the derived results. The option prices in 

these studies were derived by the construction of a riskless hedge that was supposed to 

earn a return equal to the riskless rate of interest. Alternatively, they may be derived by 

the construction of a portfolio containing the underlying and the riskless assets that 

replicates the option perfectly in all states of the world. If such a replication is feasible 

then it can be shown that the price of any contingent claim on the underlying asset is 

equal to the discounted expected payoff of the claim under a risk neutral transformation 

of the underlying asset’s return distribution, generally denoted as the Q-distribution.
3
 It is 

this arbitrage-based methodology that underlies the overwhelming majority of derivatives 

pricing studies in modern financial theory. 

The arbitrage methodology relies on two fundamental assumptions that cannot be relaxed 

easily in most applications. These are known as dynamic market completeness and 

frictionless trading. The former is most often identified with a distribution of the returns 

of the underlying asset that follows a univariate diffusion process. The latter is generally 

interpreted as the absence of transaction costs in trading the underlying asset. While there 

are extensions of the basic arbitrage methodology that can take care of several forms of 

market incompleteness, there is no satisfactory arbitrage-based approach to option pricing 

in the presence of transaction costs.
4
 Even for the cases of market incompleteness, the 

proposed option pricing models are specific to each type of underlying distribution, 

without any unifying theory; they thus require the identification of the type of underlying 

asset distribution before developing the method for pricing the option.
5
 

In this paper we examine an alternative class of option pricing models that have existed 

for several years but have received little attention in mainstream financial research.
6
 We 

claim that the approach introduced by this class of models constitutes a new option 

pricing paradigm, distinct and more general than arbitrage. It can produce general 

solutions to problems that cannot be solved by arbitrage, while being simultaneously 

                                                 
3
 See Harrison and Kreps (1979) and Harrison and Pliska (1981).  

4
See Merton (1989), and Soner et al (1996). 

5
Mixed jump-diffusion processes, GARCH processes and stochastic volatility are three examples of market 

incompleteness that have appeared in the literature. In such incompleteness cases the Q-distribution is not 

uniquely defined by arbitrage methods alone and additional assumptions are needed to derive it. See 

Merton (1976), Hull and White (1987), Amin and Ng (1993), Amin (1993), and Duan (1995) for some 

examples. 

6
This class of models was introduced by Perrakis and Ryan (1984) and extended by Levy (1985) and 

Ritchken (1985) in a single period context. The multiperiod extension was done in Perrakis (1986, 1988) 

and Ritchken and Kuo (1988). 
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capable of producing the same results as arbitrage whenever the latter works. These 

problems concern primarily market incompleteness, but the stochastic dominance 

approach has recently been extended to incorporate frictions such as proportional 

transaction costs in trading the underlying asset.
7
 Under their existing form the stochastic 

dominance models are applicable to underlying assets whose discrete time returns 

distributions are independent and identically distributed (iid) between successive time 

periods. Unlike the riskless hedge of the mainstream arbitrage approach, these models 

produce price bounds whose violation triggers stochastically dominating strategies 

involving portfolios containing the option, the underlying asset and the riskless asset. 

In this paper we first extend the stochastic dominance models to underlying asset 

distributions whose returns are Markovian but non-iid. We then show that at least for 

“plain vanilla” call and put options the results of this stochastic dominance option pricing 

approach contain as special cases virtually the entire set of results produced by the 

conventional arbitrage methodology. Furthermore, these results are common to all types 

of underlying asset distributions, and not only to distributions belonging to a given class. 

They can thus be used to price options on assets for which the return distribution is 

known only under the form of a histogram extracted from historically observed values, or 

where such a distribution has been distorted to incorporate subjective forecasts. Last but 

not least, since the models’ results are formulated in discrete time and cover continuous 

time as a limit, they may thus be used to value American, as well as European options.  

The results of this stochastic dominance approach to option pricing take the form of two 

bounds on admissible option prices; an observed market price outside the bounds triggers 

an expected utility-improving strategy of writing or purchasing the mispriced option. We 

show that for the basic case of a dynamically complete market without transaction costs, 

in which the underlying asset follows a generalized Ito process, the two bounds of the 

stochastic dominance approach converge to a single value, the one corresponding to the 

arbitrage-derived option price, under all circumstances.
8
 This convergence takes place 

even though the market for the underlying asset is incomplete for any discrete time 

subdivision of the time to expiration of the option. Since the convergence takes place 

even when there is no closed-form option price derived from the arbitrage-based 

approach, the two bounds provide an alternative method of deriving such a price via 

Monte Carlo simulations of the general form of the equations of the bounds. 

Next we examine the stochastic dominance approach in cases in which the market is 

dynamically incomplete. We examine the two main types of market incompleteness that 

have appeared in the literature, a mixed jump-diffusion process for the distribution of the 

underlying asset, and a stochastic volatility process for this same distribution. For the 

mixed jump-diffusion process there are two possible approaches in the earlier studies. 

Merton (1976) assumes that the risk arising out of the jump process is fully diversifiable 

and that the amplitude of the jumps is lognormally distributed. He then applies the 

                                                 
7
See Constantinides and Perrakis (2002, 2007). For an empirical application of the stochastic dominance 

approach in the presence of frictions see Constatinides et al (2007). 

8
This covers the simple Black-Scholes diffusion as well as several other models such as, for instance, the 

so-called constant elasticity of variance (CEV) approach, as in Cox and Rubinstein (1985, pp. 361-364). 
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traditional arbitrage method to derive an option price that is an expectation of Black-

Scholes-type expressions. Other studies such as Bates (1991), Amin (1993) and Amin 

and Ng (1993), use general equilibrium-type arguments, in which the marginal utility of 

consumption of a representative investor plays the role of a pricing operator;
9
 the option 

price becomes then a function of the investor’s risk aversion parameter. On the other 

hand, the stochastic volatility models handle market incompleteness by specifying, 

somewhat arbitrarily, a “price” of the volatility risk in order to derive a risk neutral 

process, a form of the Q-distribution that can be used to price contingent claims.
10

  

We show in this paper that under mixed jump-diffusion processes the bounds of the 

stochastic dominance approach converge to two distinct values for any distribution of the 

jump amplitude. These values are expectations of the option payoff under two different 

risk neutral Q-distributions, identified by the solutions of two partial differential 

equations (pde). Further, these bounds contain all the values derived by the equilibrium 

models, including the one corresponding to the Merton (1976) assumption, as well as 

those of Bates (1991) and Amin (1993). As for the stochastic volatility models, we show 

that the stochastic dominance bounds can be suitably redefined to cover virtually all the 

stochastic volatility models that have appeared in the literature in which the volatility risk 

is assumed fully diversifiable, as in Hull and White (1987); in such a case the two bounds 

converge to a single value. By contrast, only partial results are available by stochastic 

dominance when the volatility risk is priced, results applicable only to investors with 

constant proportional risk aversion (CPRA) utility functions. For such investors we 

identify bounds on option prices that are applicable to particular subsets of the risk 

aversion parameter value. Last, we show that under GARCH processes the stochastic 

dominance bounds, although they no longer define reservation buy/write prices for 

options, still define a nonempty interval of admissible option prices and can be used for 

pricing options.     

In the next section we summarize briefly the option bounds derived by the stochastic 

dominance approach as it has appeared in the literature till now, when the returns of the 

underlying asset are independent and identically distributed (iid). The extension to a 

Markovian structure of returns is discussed in section III, while the limiting forms of the 

bounds when the stock returns follow a general Ito process are shown in section IV. 

Sections V, VI and VII present the results for mixed jump-diffusions, stochastic volatility 

and GARCH processes. Section VIII concludes. 

2. The Stochastic Dominance Approach 

The stochastic dominance results were initially derived in Perrakis and Ryan (1984) by 

eliminating stochastically dominating strategies in comparing two portfolios. They were 

extended by considering a single period market equilibrium model in Ritchken (1985), 

and by second order stochastic dominance (SSD) comparisons of the terminal wealth 

                                                 
9
A similar equilibrium argument underlies the GARCH option pricing models, first presented in Duan 

(1995). 
10

 Hull and White (1987) assume that the stochastic volatility risk is diversifiable (the price of volatility risk 

is zero); while Heston (1993) and Bates (1996) adopt particular forms of that price of risk. 
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distributions by Levy (1985). Of these the portfolio comparisons and the market 

equilibrium (but not the SSD comparisons of terminal wealth) approaches have been 

extended to multiperiod problems by Perrakis (1986, 1988) and Ritchken and Kuo 

(1988).
11

 Here we adopt the formulation of this latter study. We first reproduce the 

original results and then reformulate them in a stochastic dominance context. 

Consider a two period economy with a stock with price 0S and a bond with price B0 at 

time 0. There is also a call option expiring at the end of the period of length T, and there 

are also n states of nature at T. The n   states are ordered by the stock payoff  
T

s   at 

option expiration. Thus, the stock pays  
j

s   dollars in state j, where j is an index, such 

that  1 2...
n

s s s≤ ≤  .The probabilities of the n states are  1 2, ,...,
n

p p p  . The pricing kernel, 

the state-contingent discount factors, are denoted by 1, , nY Y… , and it is assumed that  

1 2 ...
n

Y Y Y≥ ≥ ≥ . The bond pays one dollar in each state. The call option has strike price K 

and payoffs  1 2, ,...,
T n

c c c c=   in the n states of the economy. Then as shown in Ritchken 

(1985) the lower (upper) bounds of the option can be obtained by solving the following 

linear programming problems: 

 

0

1

0

1

0

1

1 2

min(max)

subject to :

0 1

...

n

j j j

j

n

j j j

j

n

j j

j

j

n

c c p Y

S s p Y

B p Y

p

Y Y Y

=

=

=

=

=

=

≤ ≤

≥ ≥ ≥

∑

∑

∑

 (2.1) 

The following assumptions constitute a set of sufficient conditions for the solution of 

(2.1) to yield stochastic dominance bounds for the option:  

a. There exists at least one utility-maximizing risk averse investor in the economy who 

holds only the stock and the riskless asset; 

b. There is no other trading date from time zero till the expiration of the option;
12

 

c. The investor is marginal in the option market; 

                                                 
11

 Only the portfolio comparisons approach has been extended to cover transactions costs. See 

Constantinides and Perrakis (2002, 2007). 

12
Grundy (1991) presents an example of a two-period non-recombining binomial tree in which the call 

payoffs are not monotone non-decreasing with respect to the stock returns; a similar case is also in Cox and 

Rubinstein (1985, p. 157 footnote 14). It is important to note that the stochastic dominance approach is still 

valid in its recursive form in those cases, since condition (b) is violated in these examples; see also note 15.  
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d. The expected stock return  01
ˆ ( ) /

n

n j jj
z s p S

=
≡ ∑   is greater than or equal to the 

riskless return  1

0R B
−=  

Under assumptions (a)-(b) the pricing kernel is the normalized marginal utility of the 

investor wealth under the corresponding state of the economy, and the first two 

constraints in (2.1) reflect the first order conditions of utility maximization.
13

 By 

assumption (d) the investor is always long in the stock, and risk aversion guarantees the 

monotonicity of the pricing kernel, the last constraint of (2.1). The investor may improve 

her utility by introducing a long or a short option position in her portfolio. Assumption 

(c) maintains the monotonicity of the pricing kernel in the presence of such an option 

position. The violation of either one of the two bounds defined by (2.1) triggers strategies 

that are utility-improving: an option price violating the upper (lower) of the bounds 

defined by (2.1) triggers a strategy of writing (purchasing) the violating option, which 

increases expected utility for any risk averse investor. 

Assumption (a) is clearly the key condition underlying the stochastic dominance 

approach; it is, however, only a sufficient condition.
14

 Assumption (b) will be relaxed in 

the next section. Assumption (c) can be satisfied if the option position of the investor is 

limited with respect to the size of her portfolio. Last, assumption (d) can easily be 

relaxed: the ordering of the state contingent discount factors shown in (2.1) is exactly 

reversed but the analysis still holds if  ˆ
nz R≤  ; this case will be examined as an 

extension.  

Assumption (a) may be restrictive for options on individual stocks, but its validity in the 

case of index options cannot be doubted, given that fact that numerous surveys have 

shown that a large number of US investors follow indexing strategies in their 

investments.
15

 Note also that all option pricing models that combine arbitrage with 

equilibrium-type arguments use a monotone pricing kernel to price the options, which is 

the only feature arising out of assumption (a) used in deriving the bounds. A key factor in 

the stochastic dominance approach is the convexity of the option payoffs. Given such 

convexity, it can be shown that the two problems shown in (2.1) have the following 

solutions, which can be found with a simple geometric argument presented in Ritchken 

(1985) 

 

1
0 1

1 1

1
0 1

1 1

ˆˆ1
ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ1
ˆ ˆ

ˆ ˆ ˆ ˆ
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n n

h h
h h

h h h h

z RR z
C c c

R z z z z

R z z R
C c c

R z z z z

+
+

+ +

 −−
= + − − 

 − −
= + − − 

 (2.2) 

                                                 
13

 Under proportional transaction costs on the risky asset the investor utility is no longer a function of 

wealth but must contain the stock and riskless asset positions as separate arguments. The market 

equilibrium conditions are, therefore, considerably more complex. See Constantinides et al (2007).   
14

 The monotonicity of the pricing kernel appears also as a necessary condition in several asset pricing 

models in which assumption (a) clearly does not hold. See the review monograph by Jackwerth (2004).  
15

 Bogle (2005) reports that in 2004 index funds accounted for about one third of equity fund cash inflows 

since 2000 and represented about one seventh of equity fund assets. 



 7 

In (2.2) we denote by  , 1, ,iz i n= …  , the stock returns  0/is S   , and we define the 

following conditional expectations for  1, ,j n= …  : 

 

1

1

1

1

ˆ |

ˆ |

j
i i i

j T T jj
i i

j
i i i

j T T jj
i i

c p
c E c S s

p

z p
z E z z z

p

=

=

=

=

∑
 = = ≤ ∑

∑
 = = ≤ ∑

 (2.3) 

In the expressions (2.2) h is a state index such that  1
ˆ ˆ

h h
z R z +≤ <  . The convexity of the 

option payoffs implies that the expressions  ˆ
j

c   form a convex function of the conditional 

mean of the asset return  0 0
ˆ [ / | / ]

j T T j
z E S S S S z= <  . The upper bound is a linear 

combination of the lowest return and the mean return, while the lower bound is a linear 

combination of the conditional expected returns ˆ
h

z and 1
ˆ

h
z + . Therefore, the upper bound 

is a function of all the next period returns, while the lower bound is a function of  

1 1, ,
h

z z +…  .
16

 

From the expressions (2.2) it can be easily seen that the two call option bounds are 

discounted expectations of the option payoff under two risk neutral probability 

distributions, as in the conventional binomial model. By substituting the conditional 

expected returns j in the bounds formulas, the upper bound can be expressed as the 

expectation of the payoff under the following risk neutral probability measure, the U-

distribution 

 

1
1 1

1 1

1

1

ˆˆ

ˆ ˆ ˆ ˆ

ˆ
, 2, ,

ˆ ˆ

n

n n

j j

n
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U p

z z z z

R z
U p j n

z z

−−
= +

− −

−
= =

−
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 (2.4) 

The lower bound, on the other hand, is the expectation of the option payoff in states  

1, , 1h +…   under the L-distribution, the risk neutral probability measure 
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 (2.5) 

Under the two probability measures the option bounds become
17

 

                                                 
16

 Note that in the binomial model (n = 2) the two bounds distributions coincide and define a unique option 

price; see Perrakis (1986). The stochastic dominance approach is, thus, a generalization of the binomial 

model. 
17

 Hereafter a superscript denotes the measure under which the expectation is taken. 
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1
( ) [max( ,0)]

1
( ) [max( ,0)]

U

L

C S E Sz K
R

C S E Sz K
R

= −

= −
 (2.6) 

where  ( )C S   and  ( )C S   are convex functions. 

From these expressions it can be seen that the upper bound distribution is a mixture of the 

historical or subjective probability distribution  ( )P z  (the P-distribution) of the 

underlying asset return  0/
T

z S S= , and a distribution concentrated at  minz  , the lowest 

possible asset return. 

 

min

min

min min

( )

( )

( )

( ) with probability  
( )

1 with probability

R z

E z z

E z R

z E z z

P z
U z

−
−

−
−


= 


 (2.7) 

This general formula applies both for continuous and discrete distributions of the returns. 

The weight of the lowest value in this mixture is such that U(z) is a risk neutral 

distribution. The transformation shown in (2.7) does not hold for distributions P(z) with  

1 min min{ } 0z z z= = =  . In this case, the upper bound becomes 

 
1

[max( ,0)]
( )

PC E Sz K
E z

= −  (2.8) 

The upper bound in this case is obtained by discounting the expected option payoff at the 

expected rate of return of the stock price. 

Similarly, the lower bound distribution is a mixture of two truncated multinomial 

distributions 

 
1

[max( ,0)]
( )

PC E Sz K
E z

= −  (2.9)  

 

1

1

1

ˆ

ˆ ˆ

ˆ

1 ˆ ˆ

ˆ ˆ( | ) with probability  
( )

ˆ ˆ( | ) with probability

h

h h

h

h h

z R

h z z

R z

h z z

P z z z
L z

P z z z

+

+

+

−
−

−
+ −

 <
= 

<

 (2.10) 

If the underlying asset has a continuous distribution, the probability for computing the 

lower bound is the truncated distribution 

 ( ) ( | ( ) )L z P z E z R= ≤  (2.11) 

This distribution is obtained by truncating the given returns distribution till the expected 

return becomes equal to the riskless rate. 
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An alternative representation of the bounds that links the stochastic dominance approach 

to the conventional equilibrium valuation of contingent claims is by taking the 

expectation with the measure  ( )P z   of the call payoff multiplied by a stochastic discount 

factor   U L
Y or Y   for the upper and lower bounds respectively. In such a case we have 

 
( ) [ max( ,0)]

( ) [ max( ,0)]

P U

P L

C S E Y Sz K

C S E Y Sz K

= −

= −
 (2.12) 

 with the factors  UY   and  LY   given by the following expressions for continuous 

distributions  ( )P z   

 

min

1 1
( )

1 1
( ) (1 ) ( )

( )
0

h

U

hR P z zL

h

Y z q q z
R R

z z
Y z

z z

δ

≤

= − +

≤
= 

>

 (2.13) 

where  ( | ) , ( )hE z z z R δ≤ = ⋅  is Dirac's delta and  
min

( )

( )

E z R
q

E z z

−
=

−
 . This representation 

will also be useful in the multiperiod formulation of the next section. 

Last, we present the single period option bounds for the case where  ˆ
n

z R<  . Although 

this case is not very relevant in either single period or multiperiod iid returns, it may arise 

in individual subperiods for non-iid returns when the parameters of the return distribution 

are functions of the stock price at the beginning of the subperiod. It may also arise in the 

pricing of options on the exchange rate. The expressions for  ( )C S   and  ( )C S   are very 

similar to (2.2). Instead of (2.3) we now define the conditional expectations 

 
_ _

| |

n n

i i i i
i j i j

jj T T j T T jn n

i i
i j i j

c p z p

c E c s s z E z z z

p p

= =

= =

∑ ∑
   = = ≥ = = ≥   

∑ ∑
 (2.3)' 

Then instead of (2.2) we get 

 

_ _
_ _

1
10 _ _ _ _

1 1

_ _
__ _ _

1
0 1_ _ _ _

1 1

1

1

h h
h h

h h h h

n
n

n n

z R R z
C c c

R
z z z z

z R R z
C c c

R
z z z z

+
+

+ +

 − − = +
 − − 

 − − = +
 − − 

 (2.2)' 

Here again the two sates  
h

z   and  1h
z +   are defined from the relation  1h h

z R z +≤ ≤  . For a 
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continuous return distribution  ( )P z   the risk neutral distributions  ( )U z   and  ( )L z   of 

the upper and lower bounds respectively become, instead of (2.7) and (2.10) 

 

max

max

max

max

( ) with probability  
( )

( ) ,
( )

1 with probability
( )

z

z R
P z

z E z
U z

R E z

z E z

−
 −

= 
−

 −

 (2.7)' 

 ( ) ( | ( ) ).L z P z E z R= ≥  (2.10)' 

 

We close this section by discussing briefly the case where the option payoff is not 

convex. In such a case the expressions  ˆ
j

c   are no longer a convex function of the 

conditional mean of the asset return  0 0
ˆ [ / | / ]j T T jz E S S S S z= <  in (2.3). In fact, the ˆ

j
c ’s 

may not even form an increasing function of the conditional means. Nonetheless, the 

program (2.1) yields a maximum and a minimum that are found on the convex hull of the 

graph of the ˆ
j

c ’s plotted as functions of the conditional means. Although closed form 

solutions for the bounds don’t exist in this case, their values may be computed 

numerically for one period, and then extended recursively in the multiperiod case as in 

the next section. These cases are particularly important when the returns are not iid, as in 

the case of stochastic volatility examined in section 6.   

 

3. Multiperiod Bounds: the General Case 
 

It is easy to extend the bounds to a multiperiod context by adopting assumptions (a), (c) 

and (d) of the previous section. Assume that there exists at least one investor in the 

market holding only the underlying asset, the riskless asset and possibly the option. The 

investor maximizes recursively the expectation of a concave utility function '( )
T

u W over 

time periods 0,1,..., ' 1T − of the terminal wealth 'T
W  at time T’, a horizon that is equal to 

or larger than the time T to option expiration. Alternatively, the investor objective may be 

to maximize the discounted stream of the utilities of consumption at every time period, 

plus possibly a concave function of a final endowment. In either case it is well known 

that in the absence of transaction costs the value function, the indirect utility at any 

intermediate time point, is a concave function of wealth at that point. Given assumptions 

(c) and (d) that guarantee that the investor would always be long in the stock, the 

concavity of the indirect utility is sufficient to establish the monotonicity of the state 

contingent discount factors in every period. The derivation of the multiperiod option 

bounds is simplest in the case of iid returns, which are examined first.  

A. The bounds for iid returns 

Under iid returns the single period distribution ( )P z  (discrete or continuous) of the one-
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period stock return  1 /
t t

z S S+=  remains the same in each time period. Similarly, the risk 

neutral distributions  ( )U z   and  ( )L z   remain the same in every period, given by (2.4) 

and (2.5) or (2.7) and (2.10) in the discrete and continuous cases, respectively. It is then 

very simple to prove by induction that the multiperiod option bounds can be derived by a 

recursive version of the linear programming problem (2.1). At any time t T< the pricing 

kernel 1,1 1,, ,t t nY Y+ +… is monotone because of the concavity of the indirect utility and 

assumptions (c) and (d), that guarantee that the investor will always be long in the stock. 

At each iteration the convex functions  ( )jC Sz    and  ( )jC Sz   will replace the call 

payoffs jc in the maximization and minimization problems respectively. Given a current 

stock price  tS   at time  t T≤  , and with the superscripts  U   and  L   denoting 

expectations under the corresponding distributions  ( )U z   and  ( )L z , the option bounds  

( )
t t

C S   and  ( )t t
C S   become

18
 

 

1

1

1

1
( ) [ ( ) ]

1
( ) [ ( ) ]

( ) ( ) max{ ,0}

U
tt t t t

L

t tt t t

TT T T T

C S E C S z S
R

C S E C S z S
R

C S C S S z K

+

+

−

=

=

= = −

 (3.1) 

In the special case where  1 min{ } 0z z= =  and (2.8) holds in a single period the upper 

bound  ( )t tC S   can be estimated very simply by the law of iterated expectations. It is 

given by
19

 

 
1

( ) [max( ,0) ]
[ ( )]

P

t t T tT t
C S E S K S

E z −
= −  (3.1)’ 

In a distribution with iid returns the multiperiod bounds can be extended to American 

options with very little reformulation. The following expressions give the bounds for 

American call options on stocks with a constant dividend yieldγ , as well as for American 

put options. They may be proven very simply by induction. 

 

, , 11 1

, , 11 1

1

1
( ) [max{ (1 ) , ( )} ],

1
( ) [max{ (1 ) , ( )} ],

( ) ( ) ( (1 ) ) .

U
A t A tt t t t t t

L

A t A tt t t t t t

AT ATT T T T

C S E S z K C S z S
R

C S E S z K C S z S
R

C S C S S z K

γ

γ

γ

++ +

++ +

+
−

= + −

= + −

= = + −

 (3.2) 

                                                 
18

For a more detailed analysis see Perrakis (1986, 1988) and Ritchken and Kuo (1988). 

19
Note that (3.1)’ also holds in the presence of proportional transaction costs in the underlying asset if it is 

multiplied by the roundtrip transaction costs. See Proposition 1 of Constantinides and Perrakis (2002). 
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, , 11 1

, , 11 1

, , 1

1
( ) [max{ , ( )} ],

1
( ) [max{ , ( )} ].

( ) ( ) ( )

U
A t A tt t t t t t

L

A t A tt t t t t t

A T A TT T T T

P S E K S z P S z S
R

P S E K S z P S z S
R

P S P S K S z

++ +

++ +

+
−

= −

= −

= = −

 (3.3) 

B. The general case of non-iid returns 

In a general model of security returns in which the iid assumption does not hold the 

option price at time t under the no arbitrage approach is the conditional expectation of its 

payoff times the stochastic discount factor given the information available at time t. The 

same result applies also in the stochastic dominance approach under assumptions (a) and 

(c) of the previous section, except that that the discount factor now has the interpretation 

of the normalized marginal utility of wealth. Let  ( , , )PΩ F   a complete probability space 

where  Ω   comprises all the possible sequences of states of the economy until the 

expiration of the option, F  is the sigma algebra generated by  Ω   and  P   is the 

subjective probability measure representing the beliefs of an investor. The option price at 

time t is 

[max( ,0) | ]P

t T T t
c E S K Y= − F  

 Where 0 1 T⊂ ⊂ ⊂…F F F  is the filtration generated by Ω , tF   represents the 

information set available to the investor at time t, and YT is the pricing kernel. By the law 

of iterated expectations 

1

1 1

[ [max( ,0) | ] | ]

[ | ]

P P

t T T t t

P

t t t

c E E S K Y

E c Y

+

+ +

= −

=

F F

F

 

Two problems arise when the iid assumption is relaxed. The first one is the possibility of 

non-convexities of the call option bounds with respect to the price of the underlying asset 

at any time  t T<  . In a single period the convexity of the bounds is strictly a function of 

the convexity of the call payoff with respect to the price of the underlying asset. In a 

multiperiod or in a continuous time model the convexity of the payoff is not always 

sufficient to guarantee the convexity of the option price. This issue has been examined in 

detail by Bergman et al (1996), who provide necessary and sufficient conditions for 

convexity to hold. They show that convexity holds in all univariate diffusion cases, as 

well as in most diffusion cases in which volatility is stochastic.  

The second problem that arises in applying the stochastic dominance approach in non-iid 

returns is the fact that assumption (d) may no longer hold in every period, since it may 

turn out that in the conditional distribution given tF we may have ˆ
nz R< . For all cases in 

which assumption (d) holds problem (2.1) can be rewritten in recursive form as follows 
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1, 1,

1, 1, 1,

1, 1,

1,

1

1

1

1,

1,1 1,2 1,

min( max ) 

subject to :

0 1

t j t j

t j t j t j

t j t j

n

t t j

j

n

t

j

n

t

j

t j

t t t n

c c p Y

S s p Y

B p Y

p

Y Y Y

+ +

+ + +

+ +

+
=

=

=

+

+ + +

=

=

=

≤ ≤

≥ ≥ ≥

∑

∑

∑

…

 (3.4) 

where the variables 1 1 1 1, , ,t t t ts c p Y+ + + + are conditional on the information available at time t. 

If, on the other hand, ˆ
nz R<  then the monotone ordering of the state contingent discount 

factors is reversed in (3.4). In both cases if, in addition, convexity also holds then, by 

applying successively the results of the two-period problem, we can find expressions 

equivalent to (3.1) for non-iid returns. For instance, the upper bound yields at every time 

period 

1 1

1 1
[ | ] [ | ]U U

t t t t t
c E c E C

R R
+ +≤ ≤F F  

 and by repeatedly applying the law of iterated expectations we get 

( ) ( )1
[max( ,0) | ]

n
U n

t tn
C E Sz K

R
= − F  

where ( )nz is the n period return and ( )n
U is its distribution. A similar process may also be 

applied for the derivation of the lower bound. When the returns are iid ( )n
U  is the the n-

period convolution of the upper bound distribution derived in the previous section. In the 

more general case the distribution of  1t
S +   may depend on  

t
S   but the option price may 

continue to be convex in  
t

S  . In such cases the option upper bound is still given 

recursively by
20

 (3.1), with the distribution U  given by (2.7) or (2.7)' depending on 

whether ˆ
n

z R≥  or ˆ
n

z R< , and with the return distribution ( )P z  now dependent on 
t

S . 

While a closed form solution for the bound would be difficult to derive, the bounds may 

be easily computed via Monte Carlo simulations of the distributions ( )U z  and 

( )L z generated at each time step from the corresponding ( )P z . For both bounds the 

monotone ordering of the state contingent discount factors is reversed in (3.4) when 

ˆ
n

z R< , and it is (2.2)' and (2.3)', or (2.7)' and (2.10)', that provide the appropriate bounds 

for that particular subperiod. 

                                                 

20
A similar recursion can be applied when 1 min{ } 0z z= =  and (2.8) applies in every period. 
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In the remaining sections of this paper we examine the multiperiod bounds given by (3.1) 

or (3.4) in several cases of practical interest. It is the limiting behavior of these 

expressions as trading becomes progressively more dense and we pass from discrete to 

continuous time that is of interest in this paper. It will be shown that this limiting 

behavior contains as special cases virtually the entire set of option pricing models that 

have appeared in the literature till now, most of them derived by arbitrage methods. 

4. Option Bounds in Continuous Time: the Diffusion Case 

The limiting behavior of the bounds in (3.1) was examined in Perrakis (1988) for the 

special case of a stock return following a trinomial distribution. It was shown that when 

that distribution tended to a diffusion process the limit of both upper and lower bounds 

under a monotone pricing kernel was the Black-Scholes option price. The convergence 

criteria used in that study were the ones provided by Merton (1982) for iid returns 

following a general multinomial process. Since the bounds are available in closed form in 

such a case, it suffices to show that the limiting form of the multiperiod convolutions of 

the distributions U(z) and L(z) given by (2.7) and (2.9) or (2.10) is a risk neutral diffusion 

with the same constant volatility as the initial process. 

This line of approach is, unfortunately, not available when the underlying stock returns 

are not iid. Although the Merton (1982) criteria for the convergence to a diffusion of the 

multinomial discretization of the underlying stochastic process are still valid, they are not 

very useful in characterizing the limiting process. Further, the option bounds themselves 

are available only as recursive expressions of time-varying distributions, whose limiting 

form is not easy to ascertain under general conditions. For this reason we shall examine 

the behavior of the bounds for a more general diffusion process by adopting a different 

discretization of the stochastic process and a more general approach to convergence 

analysis. 

We consider the most general case of a diffusion process followed by the stock price in 

continuous time 

 ( , ) ( , ) ,dS S t dt S t dWµ σ= +  (4.1) 

where  W   is a Wiener process with  ( ) 0E dW =   and  ( )Var dW dt=   and  

( , ), ( , )S t S tµ σ   are unspecified functions; in the traditional Black-Scholes model both 

functions are linear with constant coefficients,  ( , )S t Sµ µ=   and  ( , )S t Sσ σ= . We seek 

a discrete time Markovian stochastic process over the interval [0, ]T  to option expiration 

that would converge to (4.1) as the length t∆ of the elementary time period tends to zero. 

Such a discrete time process defines for any number m of time periods to expiration a 

sequence of stock prices { | , }
t

S t m∆  and an associated probability measure mP . The weak 

convergence property for such processes
21

 stipulates that for any continuous bounded 

                                                 
21

For more on weak convergence for Markov processes see Ethier and Kurz (1986), or Strook and 

Varadhan (1979). 
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function f  we must have [ ]( ) ( )mP m P

T T
E f S E f S  →  , where the measure P   

corresponds to the process given by (4.1).  
m

P   is then said to converge weakly to  P   

and  m

T
S   is said to converge in distribution to  

T
S  . In our case, once weak convergence 

to (4.1) has been established for the chosen discretization we must examine the 

convergence of the transformations  U   and  L   of  P   corresponding to the upper and 

lower call option bounds respectively. The call option price bounds would then be the 

limits of the expectation of the call payoff under the limiting distributions, and a unique 

option price results if both  U   and  L   converge to the same limit. 

There are several ways to verify the weak convergence of Markov processes. For 

instance, a necessary and sufficient condition for the convergence to a diffusion is the 

Lindeberg condition, which was used by Merton (1982) to develop criteria for the 

convergence of multinomial processes. Let  
t

x   denote a discrete stochastic process in d-

dimensional space. The Lindeberg condition, a necessary and sufficient condition that  
t

x   

converges weakly to a diffusion, is that for any fixed  0δ >   we must have 

 
|| ||0

1
lim ( , ) 0

t
y xt

Q x dy
t δ ∆− >∆ →

=
∆ ∫

 (4.2) 

 

where  ( , )
t

Q x dy∆   is the transition probability from  
t

x x=   to  
t t

x y+∆ =   during the time 

interval  t∆  . Intuitively, it requires that  
t

x   does not change very much when the time 

interval  t∆   goes to zero.  

When the Lindeberg condition is satisfied, the following limits exist 

 
|| ||0

1
lim ( ) ( , ) ( )

i i t i
y xt

y x Q x dy x
t δ

µ∆− <∆ →
− =

∆ ∫
 (4.3) 

 
|| ||0

1
lim ( )( ) ( , ) ( )

i i j j t ij
y xt

y x y x Q x dy x
t δ

σ∆− <∆ →
− − =

∆ ∫
 (4.4) 

The conditions (4.2), (4.3) and (4.4) are equivalent to the weak convergence of the 

discrete process to a diffusion process with the generator 

 
2

1, 1 1

1

2

d d

ij i

i j ii j i
x x x

σ µ
= = =

∂ ∂
= +

∂ ∂ ∂∑ ∑A . (4.5) 

By the definition of the generator, for each bounded, real valued function  f   we have 
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0

( ) ( )
lim t t t

t

Ef x f x
f

t

+∆

∆ →

−
=

∆
A  (4.6) 

The limit diffusion process can also be described by the d-dimensional stochastic 

differential equation 

( , ) ( , )dx x t dt x t dWµ σ= +  

which corresponds in our case to the uni-dimensional equation (4.1) when  x S=  . To 

make the convergence results meaningful, it is assumed that this differential equation has 

a solution.
22

 We shall examine the convergence of the option bounds in continuous time 

under the following discrete time representation of the stock return process 

 ( , ) ( , )t t t t t t tS S x t t x t tµ σ ε+∆ +∆− = ∆ + ∆  (4.7) 

In (4.7) tx   is a vector of state variables known at time t  and including, but not 

necessarily limited to tS , and t tε +∆ has a bounded continuous distribution of mean zero 

and variance one,  (0,1)
t t

Dε +∆ ∼   and  min max0 t tε ε ε+∆< ≤ ≤ , but otherwise unrestricted. 

First we establish that this representation is a valid discretization of the continuous time 

stochastic process by means of the following result, whose proof is in the appendix. 

Lemma 1. The discrete process described by equation (4.7) converges weakly to the 

diffusion (4.1). 

Once we have proven the lemma we then apply it to the process governing the stock 

return
23

 

 ,( ) / ( , ) ( , ) .t t t t t t t t t t tS S S z x t t x t tµ σ ε+∆ +∆ +∆− ≡ = ∆ + ∆  (4.8) 

The limit of (4.8) is the following continuous time process 

 ( , ) ( , )t t

dS
x t dt x t dW

S
µ σ= +  (4.9) 

where ( )µ ⋅  and ( )σ ⋅  are functions of  
t

x   such that equation (4.9) has a solution. Suppose 

now that we have chosen a certain t∆   and are at some time  t T<  , observing the state 

variables  
t

x   in (4.8) and ascertaining that 1R rµ > − ≡ . We have already evaluated the 

option bounds  ,( ) ( (1 ))t t t t t tC S C S z+∆ +∆= +   and  ,( ) ( (1 ))
t t t t t t

C S C S z+∆ +∆= + . We then 

                                                 
22

 For instance, a Lipschitz condition for the functions ( ) and ( )µ σ⋅ ⋅  provides the existence and 

uniqueness of a strong solution. This condition is satisfied by all the models used in option pricing. 

23
Note that ,t t tz +∆ differs from the variable z used in equation (3.1) since the latter is the wealth relative 

while the former is the wealth relative minus one. 
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evaluate the upper and lower bounds at t by applying the relations
24

 

 
,

,

( ) [ ( (1 )) | ]

( ) [ ( (1 )) | ]

U

t t t t t t

L

t t t t t t

C S E C S z

C S E C S z

+∆

+∆

= +

= +

F

F
 (4.10) 

where  ( ) ( ) max{ ,0}
T T T

C S C S S K= = −  , the superscripts  U   and  L   denote the 

transformations of the distribution of the one-period return given in (2.7) and (2.10) 

respectively, with the return  ,t t t
z +∆   given by (4.8). If, on the other hand, the state 

variables  
t

x   are such that  rµ ≤   then the expectations are taken with respect to the 

transformations of the distribution given by (2.7)' and (2.10)'. 

With such a procedure we can then generate the upper and lower bounds at time zero 

corresponding to any path of stock prices drawn from the discrete process (4.8); the 

distribution of the error term ,t t tε +∆  can be a very simple one, such as a uniform 

distribution centered at 0 with its variance set equal to 1. Of particular interest, however, 

is the existence of a limit to these bounds as  0t∆ →   and (4.8) tends to (4.9). These 

limits are expressed by the following two propositions that form the main results of this 

section and whose proof is in the appendix. 

Proposition 1. When the underlying asset follows a continuous time process described by 

(4.9) the stochastic dominance upper bound of a European call or put option converges 

to the discounted expectation of the terminal payoff of an option on an asset whose 

dynamics are described by the process 

 ( , )t

dS
rdt x t dW

S
σ= +  (4.11) 

where r  is the (continuous time) riskless rate of interest. 

Proposition 2. Under the conditions of Proposition 1 the stochastic dominance lower 

bound of a European call or put option converges to the same limit as the upper bound. 

These remarkable results establish the formal equivalence of the stochastic dominance 

approach to the prevailing arbitrage methodology for plain vanilla option prices 

whenever the underlying asset dynamics are generated by a diffusion or Ito process, no 

matter how complex. The equivalence holds for stock options as well as for index 

options, even though the assumption that there must be an investor holding only the stock 

and the riskless asset may not always appear reasonable. Note that the univariate Ito 

process is the only type of asset dynamics, corresponding to dynamically complete 

markets, for which options can be priced by arbitrage considerations alone. The 

                                                 
24

 The recursive evaluation shown in (4.10) assumes that the recursive evaluation of the bounds shown in 

(3.4) is still valid, which is the case only if the option price is convex at any time t with respect to the price 

of the underlying asset. While this holds always for the univariate diffusions, the cases of multivariate 

diffusions like stochastic volatility are more complex and will be examined in Section 6. If convexity does 

not hold (4.10) still holds but the recursive expectations do not necessarily bind all admissible option 

prices.  
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stochastic volatility, GARCH processes, and mixed jump-diffusion models need 

additional assumptions beyond arbitrage in order to complete the market. 

Valuation of the option by Monte Carlo simulation of the bounds for the cases where no 

closed-form expression for the option price exists is certainly an alternative to an option 

value computed as a discounted payoff of paths generated by the Monte Carlo simulation 

of (4.11). While there may not be any computational advantages in going through the 

bounds route to option valuation, the fact that both upper and lower bound tend to the 

same limit may provide a benchmark for the accuracy of the valuation, in contrast to the 

direct simulation of (4.11). Further, the possibility that the bounds may provide an 

accurate approximation of the option price in cases where the exact form of the asset 

dynamics is unknown is an empirical question that merits consideration, even though it 

lies beyond the scope of this paper. In the following sections we examine the behavior of 

the bounds under asset dynamics that go beyond the general process for dynamically 

complete markets described by (4.1).  

5. Option Bounds in Continuous Time and Incomplete Markets 

I: Mixed Jump-Diffusion Processes 

Jump-diffusion processes characterize the dynamics of the underlying asset price 

distribution whenever there are discontinuous jumps in the time path of the stock price 

caused by the sudden and unexpected arrival of important information. Such jumps have 

long been recognized as an important source of market incompleteness. Their presence 

makes the valuation of options solely by arbitrage methods infeasible, except in a 

binomial model.
25

 As for the stochastic dominance approach, it was shown that the two 

bounds converge to two different option values at the limit of continuous trading even in 

the case of a very simple three-state jump process (up, down, and stay the same).
26

 

When there are jumps in the underlying asset price distribution it is not possible to 

replicate the option with a portfolio comprising the riskless asset and the underlying 

asset. The pricing of the option requires extra assumptions regarding the jump risk. The 

most common assumption, originally introduced by Merton (1976), is that the jump risk 

is diversifiable. In such a case the market will not pay a risk premium over the riskless 

rate for bearing the jump risk and risk neutral pricing applies by assuming that the jump 

probabilities are risk neutral. With such an assumption a closed-form expression for the 

option price was provided by Merton for the case where the amplitude of the jump size 

follows a lognormal distribution. Alternative approaches for valuing options in jump-

diffusion cases have been provided by Amin and Ng(1993), Amin (1993) and Bates 

(1991, 1996).
27

 

                                                 
25

See Cox and Rubinstein (1985, pp. 365-368). 

26
See Proposition 6 in Perrakis (1988). 

27
See also Bakshi, Cao and Chen (1997), who added jump components to a stochastic volatility model. 

More recently Duffie, Pan and Singleton (2000) have introduced option pricing models for underlying 

assets that contain jumps in both asset returns and their stochastic volatility. 
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In this section we examine the stochastic dominance approach to option pricing in the 

case of underlying assets whose returns follow jump-diffusion processes. As with the 

general diffusion case, we first provide a discretization of the continuous time process 

that converges at the limit to the given jump-diffusion process. The option bounds are 

derived by the stochastic dominance approach from such a discretization by applying the 

risk neutral transformations (2.7) and (2.10) to the discrete one-period distribution. The 

two transformed distributions are then shown to converge at the continuous time limit to 

two different option prices. These prices correspond to two different risk neutral jump-

diffusion processes, each one of which prices options in a manner similar to the Merton 

(1976) assumption of diversifiable jump risk. We provide two partial differential 

equations (pde) satisfied by the upper and lower bounds respectively.
28

 The two bounds 

contain all the jump-diffusion option prices that have appeared in earlier studies, 

including the Merton (1976) price. We assume that the underlying asset returns follow 

the process 

 ( )t
t J t t t t

t

dS
dt dW J dN

S
µ λµ σ= − + +  (5.1) 

where the last term is a jump component added to the diffusion. Although our results 

apply to the more general case where both 
t

µ and 
t

σ  are functions of 
t

S and time, we 

shall assume in what follows that  , ,
t t t

µ µ σ σ λ λ= = =  and 
t

J J= , in line with earlier 

studies; we shall also assume that  rµ > . The variable J represents the logarithm of the 

jump size. It is a random variable with distribution 
J

D   with mean 
J

µ  and variance  
J

σ . 

N is a Poisson counting process with intensity λ . In most of the literature it is assumed 

that 
J

D   is a normal distribution. 

The first step in deriving the bounds on this process is to find a discrete approximation 

that converges weakly to (5.1). It will be shown that the following process is such an 

approximation, with ,t t t
z +∆ denoting the logarithmic return. 

 , ( )t t t Jz t t J Nµ λµ σε+∆ = − ∆ + ∆ + ∆  (5.2) 

where ε  is a random variable with a given distribution, either a bounded continuous 

distribution (0,1)D , or even a simple binomial process taking the values 1±  with 

probability 1/2. The returns process can be characterized as a mixture of a diffusion and a 

jump, with corresponding probabilities 1 tλ− ∆ and  tλ∆ :  

,

( ) with probability 1

with probability

D J
t t t

z t t t
z

J t

µ λµ σε λ

λ
+∆

 = − ∆ + ∆ − ∆
= 

∆
 

                                                 
28

Of these two pde's only the one corresponding to the upper bound yields a closed-form solution under a 

lognormal distribution of the amplitude of the jumps. For the lower bound, and for all other jump amplitude 

distributions, both option bounds can be obtained either through numerical methods or through their 

characteristic functions following the approach of Heston (1993) and Bates (1996). 
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It can be easily seen that this process does not satisfy the Lindeberg condition, since 

, ,| | | |0 0

1 1
lim ( ) ( ) lim (1 ) ( )

t t t t t t
t J D

z zt t
Q dD J t dD

t tδ δ
δ λ λ ε

+∆ +∆> >∆ → ∆ →
= + − ∆

∆ ∆∫ ∫  

As shown in the proof of Lemma 1 for the diffusion case, the second integrand is zero for 

t∆  sufficiently low. However, the first integrand is strictly positive for any t∆ , implying 

that the process does not converge to a diffusion in continuous time. The following result, 

proven in the appendix, shows that (5.2) is a valid discrete time representation of (5.1). 

Lemma 2. The discrete process described by (5.2) converges weakly to the jump-

diffusion process (5.1). 

Next we examine the limiting behavior of the stochastic dominance bounds derived from 

(5.2). We assume, without loss of generality, that the variable J takes both positive and 

negative values, or that min max0J J< < , implying that the jump amplitude takes values 

both above and below 1. For the option upper bound we apply (2.7) to the discrete time 

process defined by (5.1). For such a process we note that as t∆  decreases, there exists h, 

such that for any t h∆ ≤ , the minimum outcome of the jump component is less than the 

minimum outcome of the diffusion component, min mint t
J t tµ σ ε< ∆ + ∆ . Consequently, 

for any t h∆ ≤ , the minimum outcome of the returns distribution is minJ , which is the 

value that we substitute for minz  in (2.7). With such a substitution we have now the 

following result, proven in the appendix. 

Proposition 3. When the underlying asset follows a jump-diffusion process described by 

(5.1) the upper option bound is the discounted expected payoff of an option on an asset 

whose dynamics are described by the jump-diffusion process 

 ( ) U Ut
U J t

t

dS
r dt dW J dN

S
λ λ µ σ = − + + +   (5.3) 

where r is the riskless interest rate, 

 
min

U

r

J

µ
λ

−
= −  (5.4) 

and 
U

J  is a jump with the distribution and mean 

 min

min

with probability

with probability

U

U

U

U

U U

J J

U U

J
J

J

J

λ
λ λ

λ
λ λ

λλ
µ µ

λ λ λ λ

+

+


= 


= +
+ +

 (5.5) 

The proof of Proposition 3 comes from the convergence of the risk-neutral discrete time 

process defined by (5.2) to the jump-diffusion process given by (5.3). Given now 

Proposition 3, we can then use the results derived by Merton (1976) for options on assets 
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following jump-diffusion processes with the jump risk fully diversifiable.
29

 Applying 

Merton's approach to (5.3) we find that the upper bound on call option prices for the 

jump-diffusion process (5.1) must satisfy the following pde, with terminal condition 

( , ) max{ ,0}
T T

C S T S K= − : 

 
2

2 2

2

1
( ) [ ( ) ( )] 0

2

U U U

U J U

C C C
r S S E C SJ C S rC

S T S
λ λ µ σ λ

∂ ∂ ∂
 − + − + + − − =  ∂ ∂ ∂

 (5.6) 

An important special case is when the lower limit of the jump amplitude is equal to 0, in 

which case minJ = −∞  and the process (2.7) is replaced by (2.8). In such a case r is 

replaced by  µ   in (5.6), which now becomes 

 [ ]
2

2 2

2

1
[ ( ) ( )] 0

2
J

C C C
S S E C SJ C S C

S T S
µ λµ σ λ µ

∂ ∂ ∂
− − + + − − =

∂ ∂ ∂
 (5.7) 

If (5.7) holds and we assume, in addition, that the amplitude of the jumps has a lognormal 

distribution with ~ ( , )
J J

J N µ σ , the distribution of the asset price given that k jumps 

occurred is conditionally normal, with mean and variance 

 
2 2 2

ln(1 )
k J J

k J

k
k

T

k

T

µ µ λµ µ

σ σ σ

= − + +

= +
 (5.8) 

Hence, if k jumps occurred, the option price would be a Black-Scholes expression with  

k
µ  replacing the riskless rate r, or ( , , , , )

k k
BS S K T µ σ . Integrating (7.7) would then yield 

the following upper bound, which can be obtained directly from Merton (1976) by 

replacing r by µ . 

 
0

[ (1 ) ]
exp[ (1 ) ] ( , , , , )

!

k

J
J k k

k

T
C T BS S K T

k

λ µ
λ µ µ σ

∞

=

+
= − +∑  (5.9) 

When the jump distribution is not normal, the conditional asset distribution given k jumps 

is the convolution of a normal and k jump distributions. The upper bound cannot be 

obtained in closed form, but it is possible to obtain the characteristic function of the 

bound distribution. Similar approaches can be applied to the integration of equation (5.6), 

which holds whenever min0 J> > −∞ . Closed form solutions can also be found whenever 

the amplitude of the jumps is fixed as, for instance, when there is only an up and a down 

jump of a fixed size.
30

 A pde similar to (5.6) also holds if the process has only “up” 

jumps, in which case min 0J =  and the lowest return minz  in (2.7) comes from the 

                                                 
29

 Remark that in the stochastic dominance approach, we do not assume that the jump risk is diversifiable. 

30
See, for instance, the example in Masson and Perrakis (2000). 
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diffusion component.  

Next we examine the option lower bound for the jump-diffusion process given by (5.1) 

and its discretization (5.2). We apply now (2.10) to the process (5.2) and we prove in the 

appendix the following result. 

Proposition 4. When the underlying asset follows a jump-diffusion process described by 

(5.1) , the lower option bound is the discounted expected payoff of an option on an asset 

whose dynamics is described by the jump-diffusion process 

 L Lt
J t t t

t

dS
r dt dW J dN

S
λµ σ = − + +   (5.10) 

where 
L

J  is a jump with the truncated distribution 

|J J J≤  

The mean of the jump and the value of J  can be obtained by solving the equations 

 
( | )

L

J J

L

J

r

E J J J

µ λµ λµ

µ

− + =

= ≤
 (5.11) 

Observe that (5.11) always has a solution since rµ >  by assumption. From (5.2) it is also 

clear that as 0t∆ → all the outcomes of the diffusion component will be lower than J . 

Therefore, the limiting distribution will include the whole diffusion component and a 

truncated jump component. The maximum jump outcome in this truncated distribution is 

obtained from the condition that the distribution is risk neutral, which is expressed in 

(5.11). As with the upper bound, we can apply the Merton (1976) approach to derive the 

pde satisfied by the option lower bound, which is given by 

 
2

2 2

2

1
[ ( ) ( )] 0

2

L L L

J

C C C
r S S E C SJ C S rC

S T S
λµ σ λ

∂ ∂ ∂
 − − + + − − =  ∂ ∂ ∂

 (5.12) 

with terminal condition  ( , ) max{ ,0}T T TC C S T S K= = −  . The solution of (5.12) can be 

obtained in closed form only when the jump amplitudes are fixed, since even when the 

jumps are normally distributed, the lower bound jump distribution is truncated. 

We present in Table 5.1 and Figure 5.1 estimates of the bounds under a jump-diffusion 

process for an at-the-money option with K = 100 and maturity T = 0.25 years for varying 

subdivisions of the time to expiration, and with the following annual parameters:  

3%, 5% to 9%, 10%, 0.3, 0.05, 7%
J J

r µ σ λ µ σ= = = = = − = . The jump-diffusion 

process was approximated by a 300-time step tree built according to the method 

introduced by Amin (1993). The bounds were computed by taking the discounted 

expectation of the payoff under the time-varying risk neutral probabilities of (3.1) applied 

to subtrees. The risk neutral price is the Merton (1976) price for this process.  
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Table 5.1 

  

µ=0.09 µ=0.07 µ=0.05 Number of 
periods Upper Lower Upper Lower Upper Lower 

Risk 
Neutral 

1     3.5124      1.9731      3.1862      2.0658      2.8763      2.1712      2.3957  

2     3.5112      2.0480      3.1855      2.1229      2.8759      2.2084      2.3957  

3     3.5107      2.0902      3.1851      2.1562      2.8756      2.2311      2.3957  

4     3.5098      2.1182      3.1844      2.1781      2.8753      2.2460      2.3957  

5     3.5067      2.1380      3.1824      2.1948      2.8741      2.2574      2.3957  

6     3.5022      2.1542      3.1794      2.2061      2.8724      2.2658      2.3957  

10     3.4809      2.1932      3.1658      2.2393      2.8646      2.2877      2.3957  

12     3.4696      2.2075      3.1583      2.2484      2.8604      2.2951      2.3957  

15     3.4523      2.2224      3.1466      2.2613      2.8540      2.3027      2.3957  

20     3.4231      2.2401      3.1272      2.2733      2.8431      2.3134      2.3957  

25     3.3939      2.2540      3.1077      2.2853      2.8319      2.3184      2.3957  

30     3.3645      2.2607      3.0880      2.2932      2.8205      2.3252      2.3957  

50     3.2496      2.2890      3.0106      2.3131      2.7757      2.3367      2.3957  

60     3.1935      2.2939      2.9727      2.3188      2.7537      2.3431      2.3957  

75     3.1127      2.2973      2.9176      2.3219      2.7215      2.3471      2.3957  

100     2.9951      2.3180      2.8355      2.3335      2.6726      2.3491      2.3957  

150     2.8329      2.3303      2.7186      2.3471      2.6005      2.3635      2.3957  

300     2.6299      2.3655      2.5680      2.3722      2.5047      2.3788      2.3957  
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The results shown in Table 5.1 show a maximum spread between bounds of about 

10.4%
31

, a spread that is an increasing function of µ . Note that the range of values of µ  

implies a risk premium range from 2% to 7%, a range that covers what most people 

would consider the appropriate value of such a premium; the corresponding width of the 

bounds ranges from 4.9% to 10.5%. It is important to note that this range of allowable 

option prices in the stochastic dominance approach is the exact counterpart of the 

inability of the “traditional” arbitrage-based approaches to produce a single option price 

for jump diffusion processes, even when the latter have been augmented in this case by 

general equilibrium considerations. Indeed, the exact option prices under jump diffusion 

derived in the well-known studies of Bates (1991), Amin and Ng (1993) and Amin 

(1993) may not depend on µ , but they are all functions of the risk aversion parameter of 

the Constant Proportional Risk Aversion (CPRA) utility function of consumption used in 

the derivations; see, for instance, equation (27) of Amin and Ng (1993), or equation (33) 

of Amin (1993). Further, the assumed monotonicity of the state-contingent discount 

factors of the stochastic dominance approach in an elementary discrete time period also 

holds in the combination of jump diffusion asset dynamics and CPRA utility of 

consumption used in the more traditional approaches. Most important, the range of risk 

aversion parameter values that have appeared in the literature is extremely wide, ranging 

from 1 (logarithmic utility) to as high as 30.
32

 It can be easily verified that at least for the 

parameter values given in the above example such a wide range of risk aversion 

parameter values induces a much larger spread of call option prices than the one arising 

out of the chosen values of µ in Table 5.1. In other words, the stochastic dominance 

option bounds are not only a more general approach to option pricing than general 

equilibrium based on the CPRA form of the utility function, but it can also produce a 

tighter range of admissible option prices out of the same basic data. 

6. Option Bounds in Continuous Time and Incomplete  

Markets II: Stochastic Volatility Processes 

In this section we examine the case when the underlying asset follows a multivariate 

diffusion, as in the stochastic volatility models of Hull and White (1987), Wiggins 

(1987), Stein and Stein (1991), Heston (1993), and many others. In these models the asset 

dynamics are given by equations (4.8)-(4.9), in which the vector
t

x of state variables is 

two-dimensional, consisting of the underlying stock price 
t

S  and of the asset volatility, 

which is denoted in this section by
t

x . Most studies have considered simplified versions 

of asset dynamics, of the following general form 

1

2 1 2

( ) ,

( ) ( ) ,    ( )

t

dS
S dt xdW

S

dx m x dt s x dW dW dW x dt

µ

ρ

= +

= + =
     (6.1) 

                                                 
31

 The spread is much lower for in-the-money options and reaches about 15% for the out-of-the money 

options. 
32

 See the survey article by Kotcherlakota (1996).  
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The discrete version of (6.1) can be written as follows 

,( ) / ( ) ,

( ) ( )

t t t t t t t t t t t

t t t t t t t

S S S z S t x t

x x m x t s x t

µ ε

η

+∆ +∆ +∆

+∆ +∆

− ≡ = ∆ + ∆

− = ∆ + ∆
    (6.2) 

where 
t

η  is an error term of mean 0 and variance 1, and with correlation  ( )
t

xρ   between  

t t
ε +∆   and 

t t
η +∆ . Since this is a special case of (4.8), Lemma 1 holds and the limiting form 

of (6.2) is, indeed, (6.1).  

The most common form of (6.1) used in option valuation is when the dynamic equation 

for the volatility is a mean-reverting square root process and the correlation ( )xρ is a 

constant ρ . A key issue in option pricing under stochastic volatility is the price of the 

volatility risk that enters into the pde for the option price.
33

 In some models such as Hull 

and White (1987) and Wiggins (1987) the price of the volatility risk has been assumed 

equal to zero, while in others such as Heston (1993), Bates (1996) and Nandi (1998) the 

volatility risk has a non-zero price.
34

 In all these models the functional form of the 

volatility risk price has been chosen in order to produce a closed form solution for the 

option price.        

In this section we examine the stochastic dominance bounds arising out of the 

discretization (6.2) of the stochastic volatility model (6.1) under various assumptions 

about the market price of volatility risk. We first show that under the assumption of a 

zero price for the volatility risk both stochastic dominance bounds are available in a 

recursive closed form and converge to the same value for any type of asset dynamics 

given by (6.1)-(6.2). Next we relax the volatility risk assumption and examine the 

stochastic dominance bounds for the special case of CPRA utilities and a restriction on 

the asset dynamics. We are able to derive recursive expressions for either a lower or an 

upper bound on option prices, depending on the assumed range of the risk aversion 

parameter, which is respectively restricted to either the (0,1]or the [1, )∞ subset . We also 

show that if the risk aversion parameter is not restricted then both bounds assume trivial 

values even for such a simple case as CPRA utilities.   

For the asset dynamics given by (6.1) it can be shown
35

 that the option value ( , )
t t

C S x  is 

convex in
t

S  for any
t

x . We also know from Merton (1973) that it is also increasing 

in
t

x for any
t

S . Under such conditions consider the discretization (6.2) and let 

( )
t

Z x denote the stock returns at t t+ ∆ , with ( ( ), )
t t t t

C S Z x x +∆  being the corresponding 

option price, which is convex in 
t

S Z  for any
t t

x +∆ . Define by { }
t t

Y +∆ the conditional state-

contingent discount factors for the returns given the future volatility
t t

x +∆ , which are 

monotonically ordered. Let also { }
t t

y +∆ denote the state-contingent discount factors for 

                                                 
33

 See, for instance, equation (4) in Hull and White (1987) or equations (6) and (7) in Heston (1993).  

34
See the comments by Lamoureux and Lastrapes (1993), p. 9. 

35
 See Theorem 2 of Bergman et al (1996). 



 26 

the volatility state variable. We then have  

( , ) [ [ ( ( ), ) ] ]r t

t t t t t t t t t t t t t
C S x e E y E Y C S Z x x x x− ∆

+∆ +∆ +∆ +∆= ,   (6.3) 

where the expectations are under the P − distribution. If the volatility risk is not priced 

then 1
t t

y +∆ =  and we have the following result, proven in the appendix  

Proposition 5: When the dynamics of the underlying asset follow the stochastic volatility 

model given by (6.1) and the volatility risk is not priced independently then the option 

price ( , )
t t

C S x corresponding to the discretization (6.2) is at any time [0, 1]t T∈ − bound 

by the following convex recursive expressions  

_

( , ) [( ( ) ) ],   ( , ) [( ( ) ) ]T t T tU Lr t r t

T t T t T t T t T t T tC S x e E SZ x K C S x e E SZ x K−∆ −∆− ∆ + − ∆ +
−∆ −∆ −∆ −∆ −∆ −∆

−
= − = −

 

_ _

( , ) [ [ ( ( ), ) ] ],   

( , ) [ [ ( ( ), ) ] ]

t t

t t

Ur t

t t t t t t t t t

Lr t

t t t t t t t t t

C S x e E E C S Z x x x x

C S x e E E C S Z x x x x

+∆

+∆

− ∆
+∆ +∆

− ∆
+∆ +∆

− −

=

=
for t ≤ T-1,  (6.4) 

where the superscripts denote expectations taken with respect to the risk neutral 

distributions U and L of section 2, which are now conditional on the volatility 
t

x . 

Further, Propositions 1 and 2 apply to these bounds as well, which tend to a common 

value.   

Table 6.1 below shows in panel (a) the bounds for various degrees of moneyness K/S, 

evaluated recursively from (6.4) for the following special case of (6.2), the mean-

reverting stochastic volatility process, originally presented by Heston (1993), for 20 time 

periods to option expiration 

1

2 1 2

,

( ) ,    

dS
dt xdW

S

dx x dt s xdW dW dW dt

µ

κ θ ρ

= +

= − + =

.    (6.5)  

The Heston value in the table denotes the limiting form of the bounds as time becomes 

continuous, evaluated by the characteristic function approach presented in Heston 

(1993).
36

  We also show in panel (b) and in Figure 1 the value of the bounds for at-the-

money options, for T = 0.25 and for various numbers of subdivisions of the time to 

expiration. We choose again K = 100 and T = 1/12 or 0.25, with an annual mean return 

µ  equal to 0.07 and initial volatility 0x  equal to 0.1. The mean reversion coefficient 

for the variance equation is 2κ = , while the long run return variance is 0.01θ =  and the 

volatility of the variance 0.1s = . The riskless rate of interest is 5% and the correlation of 

the two Brownian motions is 0.5ρ = − . The numerical method used to compute the 

                                                 
36

 In applying the characteristic function approach we assumed a market price of risk equal to zero. 
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bounds is described briefly in the appendix. 

Table 6.1 

(a) 

 

 

 

 

(b) 

Number of 

subdivisions 

Lower bound Heston value Upper bound 

5 2.646 2.667 2.683 

10 2.653 2.667 2.679 

15 2.663 2.667 2.684 

20 2.667 2.667 2.686 

25 2.667 2.667 2.684 

30 2.667 2.667 2.683 

 

As the table values and Figure 6.1 show, the performance of the bounds is excellent, with 

a miniscule distance between bounds and with a speedy convergence to the known value.   

T = 1/12  T = 0.25 

K/S 
Lower 
bound 

Heston 
value 

Upper 
bound  

Lower 
bound 

Heston 
value 

Upper 
bound 

0.95 5.425 5.426 5.426  6.413 6.418 6.424 

1 1.366 1.367 1.372  2.667 2.667 2.686 

1.05 0.0762 0.076 0.0778  0.690 0.690 0.705 
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Figure 6.1 

Unfortunately it is not possible to generalize the results of Proposition 5 in order to 

include all possible forms of pricing of the volatility risk. This can be seen very easily 

from (6.3) and (6.4): a specific price of the volatility risk corresponds to a particular 

assignment of the state-contingent discount factors{ }
t t

y +∆ , which must be non-negative 

and sum up to 1. If we assume, as is normally the case, that the option value is an 

increasing function of the volatility
t

x then it is clear that without any further assumptions 

on the state-contingent discount factors{ }
t t

y +∆ the upper and lower bounds on the option 

prices would correspond respectively to the highest and lowest values of the volatility.
37

   

It is possible to apply a variant of the recursive expressions (6.4) in order to find bounds 

on option values in the presence of non-zero volatility risk price, but only if we restrict 

the investor preferences and/or the asset dynamics. Suppose, for instance, that the utility 

                                                 

37
 Note, however, that the recursive expressions in (6.4) are sufficiently general to accommodate the systematic 

volatility risk results of Heston (1993) and Amin and Ng (1993, Proposition 2), provided the asset dynamics equations 

(6.1) are modified to incorporate the parameter(s) representing the price λ of the volatility risk. For instance it suffices 

to change the drift term in the second equation in (6.5) from ( )kx dtκθ − to ( ( ) )k x dtκθ λ− + and apply 

Proposition 5 to these new asset dynamics in order to reproduce the Heston (1993) results; see his equation (27). 

Nonetheless, the market price of risk must still be determined outside the stochastic dominance model and is specific to 

the assumptions about the form of the investor utility function and the asset dynamics.  
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of wealth function is of the CPRA type, of the form 
1

( ) ,   0
1

w
u w

α

α
α

−

= >
−

, where w  

denotes the investor wealth. Since by assumption the underlying stock is the only risky 

asset in the investor portfolio, it was shown in Merton (1971) that the indirect utility is a 

separable function of two products, one of which contains the wealth and the other the 

state variables, which in our case consist of the volatility
t

x . Since wealth is also 

proportional to the stock price
t

S , the indirect utility ( , , )
t t

H S x t has the following form 

1

( , , ) ( , )
1

S
H S x t X x t

α

α

−

=
−

.       (6.6) 

We wish to identify conditions under which the pricing kernel 
( )

S

S

H

E H
, where 

S

H
H

S

∂
≡

∂
, 

would be monotone in S ; note that there are no closed-form expressions for the 

function ( , )X x t . At time t the capital market equilibrium in the discretized model yields 

1[ ( , ) , ]

[ ( , ) , ]

r tt tt tt t

t t t tt t

E X x t t S S x
e

E X x t t S S x

γ α

α

−
∆+∆+∆

−
+∆+∆

+∆
=

+∆
,    (6.7) 

and the price of the option is given by   

[ ( , , ) ( , ) , ]
(

[ ( , , ) , ]

[ ( , ) ( , ) , ]

[ ( , ) , ]

), S t t t t t t t tt t

S t t t tt t

t t t t t t t tt t

t t t tt t

E H S x t t C S x S x
C

t t E H S x t t S x

E X x t t S C S x S x

E X x t t S S x

S x

α

α

+∆ +∆ +∆+∆

+∆ +∆

−
+∆ +∆ +∆+∆

−
+∆+∆

+∆
=

+∆

+∆
=

+∆

=

.  (6.8) 

A key determinant of the applicability of the stochastic dominance approach to the 

pricing of volatility risk is the shape of the functions 

[ ( , ) ] ( . )E X x t S S S t
α ψ− ≡ ,   [ ( , ) ] ( )E C S x S Sφ≡     (6.9) 

which depend on the risk aversion parameter α  and the dynamics (6.1)-(6.2), especially 

the sign of the correlation ( )xρ . Although there is little that can be said about these 

functions, we can obtain some results in the special case ( ) 0  for all x xρ = . This is 

expressed by the following result, proven in the appendix. 

Proposition 6: When the dynamics of the underlying asset follow the stochastic volatility 

model given by (6.1), the investor utility function is of the CPRA type with risk aversion 

parameterα , and the correlation coefficient ( )xρ is zero for all x  then the option price 

( , )
t t

C S x corresponding to the discretization (6.2) is at any time [0, 1]t T∈ − bound by the 

following convex recursive expressions  
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(I) When 1α ≥  then ( , ) ( , )
t t t t

C S x C S x
−

≥ , where ( , )
t t

C S x
−

is given by (6.4) 

(II) When (0,1]α ∈  then 
_

( , ) ( , )
t t t t

C S x C S x≤ , where 
_

( , )
t t

C S x is given by 

(6.4) 

Unfortunately it is not possible to find an upper (lower) bound for the option price in 

Case (I) (Case (II)). As it can be easily seen from the proof of Proposition 6, the absence 

of any restrictions on the shape of the function ( , )X x t implies that these bounds don’t 

exist in the absence of additional arbitrary assumptions, even with the simplified asset 

dynamics assumed here. Nonetheless, Proposition 6 is useful, insofar as it clarifies the 

results of the well-known stochastic volatility models of Hull and White (1987), Wiggins 

(1987), and Stein and Stein (1991), which assume the same asset dynamics and zero price 

for volatility risk. As Wiggins (1987) points out, the only way that one can extract a 

unique option price for CPRA utility investors is to assume that the representative 

investor has logarithmic utility, 1α = . Most of the empirical evidence in the studies 

surveyed in Kotcherlakota (1996), however, find that 1α > , implying that the stochastic 

volatility studies that assume zero correlation and zero volatility risk actually estimate 

lower bounds on the admissible option prices if the volatility risk assumption is relaxed. 

It is also not easy to obtain useful results that are not parameter-dependent if we relax the 

assumption that ( ) 0  for all x xρ = . To see this consider the case 1α ≥ , in which 

case ( , )X x t is increasing in x , as shown in Wiggins (1987), noting also that ( , )C S x is 

likewise increasing in x . Then we have, from (6.8) and noting the definitions (6.9) 

 
[ ( , ) ( , ) , ]

(
[ ( , ) , ]

), t t t t t t

t t t t

E S t t S t t S x
C t t E S t t S x

S x
ψ φ

ψ
+∆ +∆

+∆

+∆ +∆

+∆
≥ .   (6.10) 

(6.7) now becomes 

[ ( , ) , ]

[ ( , ) , ]

t t t t t t r t

t t t t

E S t t S S x
e

E S t t S x

ψ

ψ
+∆ +∆ ∆

+∆

+ ∆
=

+ ∆
.     (6.11) 

To derive a lower bound from (6.10)-(6.11) we need to assume that ( . )S tψ is monotone 

decreasing in S , a property that depends on the size of the parameter α  and the sign and 

size of the parameter ( )xρ . If such monotonicity is assumed then one can presumably set 

( , )
t t t t

S t t Yψ +∆ +∆+ ∆ ≡ and derive recursively a lower bound on ( , )
t t

C S x by minimizing the 

RHS of (6.10) with respect to
t t

Y +∆ subject to (6.11).. No closed form solutions would be 

available, however, since the properties of ( )Sφ are similarly parameter-dependent.     
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7. Option Bounds in Continuous Time and Incomplete  

Markets III: GARCH models 

Last we examine the GARCH model, which has appeared in a number of different 

formulations in the literature. It is a discrete time model in which the volatility in each 

successive period depends on the error term of the previous period. Financial trading may 

or may not take place within each period. If no trading occurs within each period then the 

market is incomplete and no unique price emerges. One possible approach to “complete” 

the market is the one originally introduced by Duan (1995), who assumes the existence of 

a representative investor with a constant proportional risk aversion (CPRA) utility 

function. This assumption allows the derivation of a local risk neutral valuation operator 

that transforms the actual return probability distribution into a risk neutral one. We 

illustrate the derivation of the stochastic dominance bounds for the NGARCH 

specification used by Duan (1995). In that model the asset dynamics are given by 

 

1
1 1 1 1

2

1 0 1 2

1

1
ln
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| (0,1)

t
t t t t

t

t t t

t t

S
r h h h

S

h h

N

λ ε

β β β ε

ε

+
+ + + +

+

+

= + − +

= + +

∼F

   ,    (7.1) 

in which 1th + , the volatility of the innovations 
1t

ε
+

, is a function of past volatilities and 

innovations. Note that according to the standard notation used in the GARCH literature  

1th +  is known at time t. The parameter  λ   is proportional to the risk premium of the 

stock.    

The value 1( , )
t t

C S h + of an option when the underlying asset follows the dynamics given 

by (7.1) is given by a discounted recursive expectation with a pricing kernel 1{ }tY +  

1

1 1

1

1 1 1 2 1

( , ) [ ( ) ]

( , ) [ ( , ) , ]

T t T T

t t t t t t t

C S h R E Y S K

C S h R E Y C S h S h

− +
− −

−
+ + + + +

= −

=
   (7.2) 

While the convexity of 1
( , )

t t
C S h +  as a function of tS  is a consequence of Merton’s 

(1973) Theorem 10, the function 1 2 1( , | , )
t t t t

C S h S h+ + +  is not necessarily convex in 1tS + , 

since the error term 1t
ε + enters independently into both the price 1tS +  and the volatility 

2th + .  Although we cannot find bounds on all option prices corresponding to the asset 

dynamics given by (7.1), we can prove the following result, proven in the appendix. 

Proposition 7: When the dynamics of the underlying asset follow the GARCH model 

given by (7.1) then there exist option prices ( , )
t t

C S ε corresponding to the valuation 

model (7.2) that are at any time [0, 1]t T∈ − bound by the following convex recursive 

expressions  



 32 

1 1

_
1 1

1 1( , ) [( ) ],   ( , ) [( ) ]T TU L

T T T T T TC S h R E S K C S h R E S K− −− + − +
− −

−
= − = − , 

_ _
1

1 1 2 1

1

1 1 2 1

( , ) [ ( , | , )],   

( , ) [ ( , | , )]

t

t

U

t t t t t t

L

t t t t t t

C S h R E C S h S h

C S h R E C S h S h

−
+ + + +

−
+ + + +

− −

=

=
for t ≤ T-1.  (7.3) 

where the superscripts denote expectations taken with respect to the risk neutral 

distributions U and L of section 2.  

In the numerical results presented below the error term 
t

ε  is approximated by a 

multinomial variable of mean 0 and variance 1, as in the Markov chain approach of Duan 

and Simonato (2001). The superscript RN denotes the risk neutral Duan (1995) and Duan 

and Simonato (2001) estimates of the option value. We expect the following relationship 

between the stochastic dominance bounds and the risk neutral option price: 

.RN
tt t

C C C≤ ≤  

Table 7.1 below shows European call and put option bounds, as well as the option price 

corresponding to the Duan (1995) model, for various values of the time to expiration and 

the moneyness of the option. The partition of the time interval to option expiration is 

equal to one day for all times to expiration. The parameters are 50, 0.05S r= = , and for  

3T =  months (90 partitions corresponding to one day each) the parameters of the 

NGARCH process are  0 1 20.00001, 0.8, 0.1, 0.3β β β θ= = = =   and  0.01λ =  . 

Table 7.1 

GARCH Option Prices 

Call Price  Put Price   

K/S 

 Time 

(months) C C
RN

 C P P
RN

 P 

1 5.2605 5.2616 5.2791 0.0715 0.0765 0.0878 

3 5.9497 5.9726 6.0162 0.3916 0.4122 0.4552 0.9 

6 6.9146 6.9572 7.0288 0.8046 0.8421 0.9161 

1 1.287 1.308 1.339 1.0773 1.102 1.1269 

3 2.4116 2.4563 2.5206 1.7914 1.8337 1.8976 1 

6 3.6104 3.6747 3.7709 2.3769 2.4362 2.5347 

1 0.0595 0.0691 0.0744 4.829 4.8424 4.8416 

3 0.6081 0.6468 0.6874 4.9257 4.9621 5.0022 1.1 

6 1.5425 1.6072 1.6909 5.1855 5.2452 5.3312 

 

The table shows that the bounds perform very well. In all but one case the risk neutral 

price lies within the bounds and the only exception, the one-month in-the-money put, is 

equal to the upper bound within the limits of the accuracy of our computations. 
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An alternative assumption that may be used in deriving risk neutral option prices under a 

GARCH returns structure is to assume that there is continuous trading within each 

successive GARCH period. This is the approach taken by Kallsen and Taqqu (1998). 

Each GARCH subperiod is partitioned in intervals of length t∆ , and the returns for each 

such interval are then given by (4.8) with the corresponding constant volatility, and the 

corresponding stochastic dominance bounds are given by (4.10); the volatility varies as 

we shift from one GARCH period to the subsequent one. As the partition t∆  within each 

GARCH period becomes progressively finer, with the number of GARCH periods 

remaining the same, the two bounds also tend to the same value.
38

 To see this we note 

that the GARCH model of (7.1) becomes now 

 ( ) ,t
t t

t

dS
r h dt h dW

S
λ= + +  (7.4) 

 where 

 

0

[ ] 2

0 1 [ ] 1 2 [ ] [ ] 1 [ ] 1

[ ] 1

if 0 1

1
(ln ) if 1

2

tt

t t t t

t

h t

Sh
h r h h c h t

S
β β β λ− − −

−

≤ <


=  + + − + − − ≥


 (7.5) 

In the above formula,  [ ]t   is the largest integer number that is less than  t  . Suppose 

there are n GARCH periods till expiration of the option. Then we can use induction to 

prove that the two stochastic dominance bounds coincide. At any time t = n-1 the two 

option bounds obviously coincide, since we have a simple diffusion. Now we can apply 

induction, by assuming that the bounds coincide for any time  t τ=  , where  1tτ < −  , 

and then use Lemma 1 and Propositions 1 and 2 to demonstrate that the bounds would 

also coincide for any time [ 1, )t τ τ∈ − . The common limit of the two bounds is the local 

risk neutral price of Duan (1995).  

8. Conclusions 

In this paper we have presented a new approach to option pricing, which we have termed 

the stochastic dominance approach. This approach derives two bounds on allowable 

option prices dependent on the entire distribution of underlying asset returns. The 

distribution can be of any type, but the contingent claims are restricted to options with 

convex payoffs. We show that the two bounds are discounted payoff expectations under 

two risk neutral transformations of the original asset dynamics which remain the same 

under all types of asset dynamics. 

We then examined the convergence of the discrete time option bounds derived by 

stochastic dominance methods in a multiperiod context as trading becomes progressively 

                                                 
38

Alternatively, the length of the GARCH period itself could tend to zero at the limit. In such a case, the 

NGARCH process tends to a stochastic volatility model, for which the two bounds coincide. See Duan 

(1997). 
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more dense, under a variety of assumptions about the limiting distribution of the 

underlying asset returns. We found that this stochastic dominance approach nests 

virtually the entire set of option prices available in the literature under a variety of 

alternative methods, including arbitrage and general equilibrium. Specifically, they nest 

all the models where the distribution of underlying asset depends on a single random 

factor, as well as the models in which this same distribution depends on multiple factors, 

provided the pricing operator depends only on a single factor. They fail only whenever 

these multiple factors affect also the pricing operator over and above the effect that they 

may have on the price of the underlying asset, although the stochastic dominance 

approach still provides valuable insights in such cases as well. 

The stochastic dominance approach depends crucially on the convexity of the option 

payoffs, which makes it suitable for “plain vanilla” call and put options, but its extension 

to contingent claims with more complex payoff patterns is uncertain. It is, in principle, 

possible to apply the single period linear programming approach of section 2 to non-

convex payoffs, but the resulting contingent claim bounds would no longer have a closed 

form solution under general conditions. They would, therefore, not be easily amenable 

either to multiperiod formulations or to the limiting techniques applied in this paper. 

Similar difficulties are expected to arise if the pricing operator contains random factors 

that cannot be represented by the price of the underlying asset. Extensions of the 

stochastic dominance approach to incorporate these additional complications should be a 

major objective of future research. 

On the other hand, there are two major advantages of the stochastic dominance approach 

over alternative derivatives pricing methods. The first one is that it does produce useful 

results in the presence of market frictions such as transaction costs, in sharp contrast to 

the arbitrage approach.
39

 The second one is that it is not necessary to know the stochastic 

process governing the evolution of the price of the underlying asset in order to price the 

derivative, as long as an empirical distribution represented by a histogram of possible 

future values (or returns) of the asset is available. Such an empirical distribution is 

sufficient to derive the risk neutral U- and L-distributions that define the option bounds. 

The common derivation of these pricing distributions would presumably minimize any 

possible errors in option price stemming from the choice of the wrong model. The 

empirical implications of this second advantage should form the object of future research.

                                                 
39

 See Constantinides and Perrakis (2002, 2007). 
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Appendix 

A. Proof of Lemma 1 

The proof is similar to the one used by Merton (1982), the only difference being that 
t t

ε +∆  

is now a bounded continuous random variable rather than a multinomial discrete one. 

Denote ( )
t

Q δ  the conditional probability that | |
t t t

x x δ+∆ − > , given the information 

available at time t . Since 
t t

ε +∆  is bounded, define min maxmax | | max(| |,| |)
t t

ε ε ε ε+∆= = . 

For any 0δ > , define ( )h δ  as the solution of the equation 

.h hδ µ σε= +  

This equation admits a positive solution 

2 2 4
.h

σε σ ε µδ
µ

− + +
=  

 For any ( )t h δ∆ <  and for any possible 
t t

x +∆  , 

| | | |t t t t tx x t t h hµ σε µ σε δ+∆ +∆− = ∆ + ∆ < + =  

so ( ) Pr(| | 0
t t t t

Q x xδ δ+∆= − > ≡  whenever t h∆ <  and hence 

0

1
lim ( ) 0

t
t

Q
t

δ
∆ →

=
∆

 

 The Lindeberg condition is thus satisfied. Equations (4.3) and (4.4) are satisfied by the 

construction of this discrete process, so the diffusion limit of (4.7) is (4.1), QED. 

B. Proof of Proposition 1 

We shall consider only the case rµ > ; the proof for the case rµ ≤  is similar and is 

omitted. Under the upper bound probability given by (2.7), the returns process becomes 

,

,

,

with probability 1
,

min with probability

t t t

t t t

t t t

z Q
z

z Q

+∆
+∆

+∆

−
= 


 

where Q is the following probability 
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,

minmin

( )

( ) min( )

( )

t t t

E z r t
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E z z

t r t r
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t t t

µ µ
σεµ µ σε
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− ∆
=

−

∆ − ∆ −
= = − ∆

∆ − ∆ + ∆

 

From the definition of ,t t t
z +∆  given in (4.8) we get 

 
,

,

min

with probability 1
( ) ( )
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t t t

t t t t t

Q
z x t x t

Q
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µ σ

ε
+∆

+∆

−
= ∆ + ∆ 


 (G.1) 

The random component of the returns in (A1) has a bounded continuous distribution, so 

the upper bound process satisfies the Lindeberg condition. The upper bound distribution 

(A1) has the mean 

, ,
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min
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min

min

[ ] (1 )( ) [ ]
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Its variance is 
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= ∆ + ∆

 

Consequently, the upper bound process converges weakly to the diffusion (4.11). 

C. Proof of Proposition 2 

As with the proof of Proposition 1, we shall consider only the case rµ >  . Under the 

probability distribution given by (2.10) for the lower bound the transformed returns 

process becomes 

,
ˆ( ) ( ) ,t t t t t tz x t x tµ σ ε+∆ = ∆ + ∆  



 41 

where 
t̂

ε  is a truncated random variable ˆ{ | }
t t

ε ε ε< , with ε  found from the condition 

,[ ]L

t t tE z r t+∆ = ∆ . Since 
t̂

ε  is truncated from a bounded continuous distribution the 

Lindeberg condition is satisfied. The risk neutrality of the lower bound distribution 

implies that 

ˆ[ ] ,
t

t tE r tµ σ ε∆ + ∆ = ∆  

 and the mean of 
t̂

ε  is  

 ˆ[ ]
t

r
E t

µ
ε

σ
−

= − ∆  (G.2) 

Since this random variable is drawn from a distribution that is truncated from the 

distribution D  of 
t

ε  we get 
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We picked 
t

ε  such that [ ] 0
t t

E ε =  and we have 
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Then, from (A2)-(A4) we get 
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From the last inequality of (A5) we get 

 Pr( ) ( ).
R

t t R

t

t
O t

t

µ
σ

µ
σ

ε ε
ε

−

−

∆
> ≤ = ∆

+ ∆
 (G.6) 

(A6) implies that as 0t∆ →  the probability for all 
t

ε ε>  tends to zero. Therefore, the 

limit lower bound distribution contains all the possible outcomes of 
t

ε  . This result is 

used to compute the variance of 
t̂

ε   
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where the third equality applies the conclusion derived from (A6) and the last equality 

uses the fact that 

max

min

2( ) ( ) 1
t t t

Var dD
ε

ε
ε ε ε= =∫  

 It follows that 

2 2

,[ ] ( )L

t t t tVar z t O tσ+∆ = ∆ + ∆  

 The diffusion limit is, therefore, the process described by equation (4.11), QED. 

D. Proof of Lemma 2 

As shown in the proof of Lemma 1, the first two terms of (5.2) converge to a diffusion. 

The generator of this diffusion is 
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A  the generator of the discrete process described by (5.2). This generator 
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which is the generator of (5.1), QED.
40

 

E. Proof of Proposition 3 

As with Propositions 1 and 2, we consider the multiperiod discrete time bounds of section 

2, obtained by successive expectations under the risk-neutral upper bound distribution. 

We then seek the limit of this distribution as 0t∆ →  . The probability Q used in equation 

(2.7) is given by 
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 since the expected return under the subjective probability distribution is 
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 Observe that 
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λ  is always positive since min 0J <  and ( )E z r t> ∆  . Hence, the discrete 

time upper bound process is 
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 By removing the terms in ( )o t∆  , the upper bound process becomes 
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with probability 1 ( )
,

with probability ( )

D U

t t t U
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z t
z

J t

λ λ

λ λ+∆

− + ∆
= 

+ ∆
 (G.8) 

where U
J  is given by (5.5). This is a mixture of the diffusion component and a jump with 

intensity 
U

λ λ+  . It can be readily verified that the upper bound process is risk neutral by 

construction. By Lemma 2, therefore, it converges weakly to a jump-diffusion process 

with the generator 

                                                 
40

See for instance Merton (1992) for a discussion on the generators of diffusions and jump processes.  
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2

2 2

2

( )

1
[ ( ) ( )].

2

U U

U J

U U

U

f f
f r S

S t

f
S E f SJ f S

S

λ λ µ

σ λ

∂ ∂
 = − + +  ∂ ∂

∂
+ + −

∂

A

 (G.9) 

This process, however, corresponds to (5.3), QED. 

F. Proof of Proposition 4 

The proof is very similar to those of Lemma 2 and Proposition 3. We apply equation 

(2.10) and observe that, as with the upper bound, the lower bound distribution over 

( , )t t t+ ∆  is a mixture of the diffusion component and a jump of intensity λ  and log-

amplitude distribution ,LJ  the truncated distribution { | }J J J≤  . 

 ,

with probability 1
.

with probability

D

t t t L

z t
z

J t

λ
λ+∆

− ∆
= 

∆
 (G.10) 

By Lemma 2 this process converges weakly for 0t∆ →  to a jump-diffusion process with 

generator 

 
2

2 2

2

1
[ ( ) ( )].

2

L L

J

L L

f f
f r S

S t

f
S E f S J f S

S

µ

σ λ

∂ ∂
 = − +  ∂ ∂

∂
+ + + −

∂

A

 (G.11) 

(A11), however, corresponds to (5.10), QED. 

G. Proof of Proposition 5 

Let 
T

t
n

∆ =  denote the length of the discrete time period. At T t− ∆  the option price 

( , )
T t T t

C S x−∆ −∆  is clearly bound by the expectations UE and LE  of the payoff, which are 

convex functions of 
T t

S −∆ for any 
T t

x −∆ , as well as functions of 
T t

x −∆ . Assume now that at 

t t+ ∆ the price ( , )
t t t t

C S x+∆ +∆ is similarly bound by the expressions 
_

( , )
t t t t

C S x+∆ +∆ and 

( , )
t t t t

C S x+∆ +∆
−

given by (6.4), which are convex in ( )
t t

S Z x  for any 
t t

x +∆ . By the induction 

hypothesis we have, from (6.3), setting 1
t t

y +∆ =  

 

[ [ ( ( ), ) ] ] ( , )

[ [ ( ( ), ) ] ]

r t

t t t t t t t t t t t

r t

t t t t t t t t t

e E E Y C S Z x x x x C S x

e E E Y C S Z x x x x

− ∆
+∆ +∆ +∆

−

−
− ∆

+∆ +∆ +∆

≤

≤
   (A.12) 
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From (A.12) we get, by the assumed convexity of 
_

( , )
t t t t

C S x+∆ +∆ and ( , )
t t t t

C S x+∆ +∆
−

 

[ [ ( ( ), ) ] ] ( , ) [ [ ( ( ), ) ] ]t t t tL Ur t r t

t t t t t t t t t t t t t t t t
e E E C S Z x x x x C S x e E E C S Z x x x x+∆ +∆

−
− ∆ − ∆

+∆ +∆ +∆ +∆
−

≤ ≤   

 

Observe that the expressions within brackets in both sides of this last expression are 

convex in St for any given 
t t

x +∆  since they are expectations of functions of ( )
t t

S Z x  that 

are convex by the induction hypothesis. Hence, their expectation with respect to 
t t

x +∆ is 

also convex. Hence, ( , )
t t

C S x is bound by the convex expressions in (6.5), QED.  

 

H.     Monte Carlo Estimation of the Proposition 5 Bounds 

 

The bounds in equations (6.4) can be further written as expectations of the final payoff, 

conditional on the current asset price and the path of the volatility ,...
t Tt T

x x∆ −∆+  until the 

expiration of the option. 
_

( , ,... )

( , ,... )

( , ) [ [( ) ,... ] | , ],   

( , ) [ [( ) ,... ] | , ]

t T T

t T T

t t

t t

U x x xr t

t t t t t

L x x xr t

T T T T

T T T Tt t t t t

C S x e E E S K x x S x

C S x e E E S K x x S x

−+∆

+∆

∆

−∆

− ∆
+∆

+

− ∆
+∆

−

−∆

+
−∆

= −

= −
   

 

The probability measures ( , ,... )
t Ttt T

U x x x −∆+∆ and ( , ,... )
t Ttt T

L x x x −∆+∆ are convolutions of 

the single-period conditional bound probabilities over each path of the volatility. For a 

given discretization of the underlying process, the single-period probabilities are given by 

the expressions (2.4) and (2.5). The availability of the conditional bound probabilities in 

closed form enables the computation of the bounds by Monte Carlo simulation, using 

modified forms of the expressions given in Hull and White (1987, pp. 285-286). For each 

path of the volatility, we can compute two path-conditional option bounds.  
_

( , ,..., )

( , ,..., )

( , , ,..., ) [( ) | , ],   

( , , ,..., ) [( ) | , ]

t T T

t T T

t t

t t

t T T T

t T

U x x xr t

t t t t t

L x x xr t

t t t tT T t

C S x x x e E S K S x

C S x x x e E S K S x

+∆ ∆

−+∆

−

∆

− ∆
+∆

+
−∆

+− ∆
+ −∆∆

−

= −

= −
 

The assumption that the volatility is not priced enables us to compute the two option 

bounds as the means of the path conditional bounds. 
_ _

( , ) [ ( , , ,... )],   

( , ) [ ( , , ,... )]

t t t t t

t t

t T T

t t tt T T

C S x E C S x x x

C S x E C S x x x

+∆

+∆

−∆

−
−∆

−

=

=
 

 

 

I.   Proof of Proposition 6 
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As argued in Wiggins (1987), the function ( , )X x t is increasing (decreasing) in x when 

1α ≥  ( (0,1]α ∈ ). Since as shown in Merton (1973) ( ),C
t t

S x is an increasing function 

of 
t

x for any 
t

S , we have, from (6.8) 

 

[ ( , ) ( , ) ] ( ) [ ( , ) ] [ ( , ) ],

whenever  1 ( (0,1])  

t t tt t t t t t t tt t t t
E X x t t C S x x E X x t t x E C S x x

α α

+∆ +∆ +∆ +∆+∆ +∆
+ ∆ ≥ ≤ + ∆

≥ ∈
(A.13)  

 

Replacing (A.13) into the RHS of (6.8) and using the independence of the error terms 

t t
ε +∆ and 

t t
η +∆ we get the following, for the case 1 α ≥  and for any t T t< − ∆  

 

( ),C
t t

S x ≥
[ [ ( , ) ] ]

[ ]

t t t t t t t t

t t t

E S E C S x x S

E S S

α

α

−
+∆ +∆ +∆

−
+∆

.    (A.14) 

Set now 
t t t t

S Y
α−

+∆ +∆
≡ in (6.7) and (A.14) and we have, noting that 

t t
Y +∆ is monotone 

decreasing in 
t t

S +∆ and the call option price is convex in 
t t

S +∆  

 

  

[ [ ( , ) ] ]
( ,

[ ]

]

]

)

[

[

, t t t t t t t t

t t t

tt t

t

r tt t

t t

E Y C S x x S
C t t E Y S

S

S

E
S x

E Y S
e

E Y

+∆ +∆ +∆

+∆

+∆ ∆+∆

+∆

≥

=
 .   (A.15) 

Since at t T t= − ∆  ( , )
T t T t

C S x−∆ −∆
−

as given by (6.4) is clearly a lower bound 

on ( ),C
t t

S x , (A.15) shown clearly that the recursive expressions for the lower bound 

( , )
t t

C S x
−

in (6.4) are also lower bounds on ( ),C
t t

S x here as well. The proof for the case 

(0,1]α ∈ is symmetrical, QED. 

 

J. Proof of Proposition 7 

 For any t the probability distribution of the payoff )(
T

KS
+

− conditional on 

1
, )(

t t
hS

+
is independent of 

t
S for any given

1t
h

+
. Hence, by Merton’s Theorem 10 we 

know that 1
( , )

t t
C S h +  is convex in 

t
S for any given 

1t
h

+
. We prove the Proposition by 
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using induction to prove the following: 
_

1( , )
t t

C S h + and 1( , )
t t

C S h +
−

are convex in 
t

S for any 

given 
1t

h
+

and are bounds on admissible values of 1
( , )

t t
C S h + .  

At T-1 the above statement is obviously true. Assume that at t+1 
_

1 2( , )
t t

C S h+ + and 

1 2( , )
t t

C S h+ +
−

are convex in
1t

S
+

for any given 
2t

h
+

 and contain admissible values of 

1 2
( , )

t t
C S h+ + . Consider the expressions for 

_

1( , )
t t

C S h + and 1( , )
t t

C S h +
−

as given by (7.3). 

These expressions are convex, since the distribution of the return 
1t

t

S

S

+
 is predictable 

given 
1t

h
+

. Consider now problem (3.4) and replace 1 2
( , )

t t
C S h+ + by 

_

1 2( , )
t t

C S h+ + and 

1 2( , )
t t

C S h+ +
−

in the maximization and minimization problems respectively. Then the 

problem (3.4) yields the (not necessarily convex) solutions 1 2 1( , | , )
t t t t

C S h S h+ + +
�  and 

1 2 1( , | , )
t t t t

C S h S h+ + +
�

at t. If 1( )
t

Z h +  denotes the returns 
1t

t

S

S

+
, which take, without loss of 

generality, n discrete values  1,...,
i

z i n=  then we know from Ritchken (1985) that 

1 2 1( , | , )
t t t t

C S h S h+ + +
�  and 1 2 1( , | , )

t t t t
C S h S h+ + +
�

 lie on the convex hull of the n 

expressions 1 2 1 1[ ( , ) ( ) , , ]t t t i t tE C S h Z h z S h+ + + +≤ , graphed against the conditional means 

1 1 1[ ( ) ( ) , , ]t t i t tE Z h Z h z S h+ + +≤ ,  1,...,i n= .  These clearly contain the bounds given by 

(7.3), QED. 

 

 


