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Jump-Diffusion Option Valuation Without a 

Representative Investor: a Stochastic Dominance 

Approach 
 

 

 

 

Abstract 
 

 
We present a new method of pricing plain vanilla call and put options when the 
underlying asset returns follow a jump-diffusion process. The method is based on 
stochastic dominance insofar as it does not need any assumption on the utility function of 
a representative investor apart from risk aversion. It develops discrete time multiperiod 
reservation write and reservation purchase bounds on option prices. The bounds are valid 
for any asset dynamics and are such that any risk averse investor improves her expected 
utility by introducing a short (long) option in her portfolio if the upper (lower) bound is 
violated by the observed market price. The bounds are evaluated recursively and the 
limiting forms of the bounds are found as time becomes continuous. It is found that the 
two bounds tend to the common limit equal to the Black-Scholes-Merton (BSM) price 
when there is no jump component, but to two different limits when the jump component 
is present.   
 
 
 
 
 
Keywords: option pricing; incomplete markets; stochastic dominance; jump-diffusion 
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I. Introduction 

 
The presence of extreme events or “jumps” in the probability distribution of stock returns 
is one of the earliest examples in the financial literature of a dynamically incomplete 
market. As Merton (1976) was the first to point out, in such markets arbitrage methods 
are unable by themselves to price contingent claims without additional assumptions about 
financial market equilibrium. In modeling such equilibrium the extreme events, which are 
by definition rare, are priced by introducing a representative investor whose portfolio 
decisions define the market’s pricing mechanism. The resulting option prices are almost 
always functions of the investor’s attitudes towards risk, as well as of the parameters of 
the return distributions of the underlying asset. 
 
In this paper we introduce a different approach to contingent claims pricing in the 
presence of rare event risk. We derive option prices that are functions of the parameters 
of the underlying asset return distribution and do not depend on the attitude towards risk 
of a representative investor. Since the financial markets are incomplete the prices that we 
derive are not unique but lie in an interval whose width is a function of the risk premium 
of the underlying asset;3 except for this parameter, the prices that we derive use the same 
information set as the existing approaches. We first derive results for index options and 
then extend them to individual stock options. Our numerical results indicate that for 
“reasonable” values of the parameters of the return process the width of the interval does 
not exceed 8% for at-the-money S&P 500 index options. 
 
The main motivation for our approach is the fact that investor attitudes towards risk are 
not directly observable and their estimates are notoriously unstable and unreliable. 
Estimates extracted from empirical research show a complete disconnect between option-
based models and studies that model directly the consumption of “representative” 
investors, with the latter estimates being as much as ten times as large as the former!4 We 
discuss in the next section the effects of these large estimates on the traditional approach 
to option pricing by the representative investor. On the other hand we note that the 
realized return of the underlying asset is certainly observable and that there are statistical 
methods to extract efficient estimates of the parameters of the actual distribution of the 
returns of that asset, which in many empirical studies is assumed to be a mixture of a 
diffusion process (possibly with stochastic volatility), and rare events following Poisson 
arrivals with log-normally distributed jump amplitudes.5  

                                                 
3 While the risk premium is itself determined in equilibrium by the attitudes towards risk of the investors in 
the market, we adopt very weak assumptions for this equilibrium, such as not requiring the existence of a 
representative investor or particular types of utility functions.  
4 Bates (1991) uses a value of 2 for his option pricing results, while econometric studies in option markets 
by Engle and Rosenberg (2002) and Bliss and Panigirtzoglou (2004) report findings of 2 to12 and 1.97 to 
7.91 respectively. On the other hand Kandell and Stambaugh (1991) give estimates as high as 30, while the 
equity premium puzzle literature reports empirical findings of 41 in Mehra and Prescott (1985) and more 
than 35 in Campbell and Conchrane (1999). See also the survey article by Kotcherlakota (1996).  
5 There is a large econometric literature on the estimation of the parameters of such mixed processes from 
historical data. See, in particular, Ait-Sahalia (2004), Bates (2000), Eraker et al (2003), and Tauchen and 
Zhou (2007). Note that our results do not depend on the assumption of lognormal jump amplitude 
distributions.   
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Our results are developed in a multiperiod discrete time formulation of market 
equilibrium in an incomplete markets setup and for any type of asset dynamics. We 
assume that there exists a certain class of risk averse traders in the financial markets who 
hold only the underlying asset, the riskless asset and (possibly) the option.6 For such 
traders we derive stochastic dominance reservation write and reservation purchase option 
prices, implying that any risk averse trader would improve her utility function by 
introducing the corresponding short or long option in her portfolio if the market price 
exceeds the corresponding bound. Since market equilibrium is incompatible with the 
existence of such dominant strategies, it follows that in equilibrium the observed option 
prices should lie between the derived bounds.   
 
For our assumed class of traders the market equilibrium conditions imply that the pricing 
kernel in the discrete time setup is monotone decreasing with respect to the underlying 
asset return within a single trading period, but not necessarily when there are more than 
one periods to option expiration. From this property we extract two boundary risk neutral 
distributions under which the expected option payoffs evaluated recursively for any type 
of periods to expiration define the region of admissible option prices. We also introduce a 
suitable discretization of the return process that tends to a desired continuous time 
process at the limit of continuous trading. The interval of option values in continuous 
time under jump-diffusion asset dynamics is then found by considering the continuous 
time limits of these expected payoffs under the two boundary distributions. We also show 
that the interval shrinks to a single value, the Black-Scholes-Merton (BSM, 1973) option 
pricing model, when the jump component of the return is set equal to zero.   
 
We note that the assumption about the monotonicity of the pricing kernel in a single 
trading period, the only property that is necessary for the derivation of our bounds, is also 
satisfied in all the models of contingent claims pricing under jump-diffusion processes 
that have appeared in the literature so far. In the equilibrium models that use a 
representative investor with a CPRA utility this monotonicity is implied by the joint 
dynamics of the stock return and the wealth of the representative investor, as well as by 
the shape of the indirect utility function.7 These features also preserve the monotonicity 
in equilibrium models with more elaborate assumptions that include behavioral 
considerations such as uncertainty aversion and recursive utility.8 Unlike stochastic 
dominance, these approaches assume specific expressions for the pricing kernel.  
 
Our results are closely related to earlier studies of option pricing in incomplete markets in 
a discrete time framework. These were introduced by Perrakis and Ryan (1984), with 
important extensions by Ritchken (1985), Levy (1985), Perrakis (1986, 1988) and 
Ritchken and Kuo (1988). Constantinides and Perrakis (2002, 2007) introduced 
proportional transaction costs into these models and showed that they were capable of 
producing useful results under such conditions, unlike arbitrage- or equilibrium-based 
models. Empirical applications of this discrete time approach to the pricing of S&P 500 

                                                 
6 This assumption is eventually relaxed to allow the derivation of stock options. 
7 See, for instance, Bates (1991), Amin and Ng (1993) and Amin (1993).  
8 See Liu, Pan and Wang (2005). 
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index options were presented in Constantinides, Jackwerth and Perrakis (2009). This 
paper provides a linkage between these discrete time models and the continuous time 
framework in which most option pricing work was done.  
 
The paper is organized as follows, with all proofs consigned to the appendix. In the next 
section we present the discrete time representation of the stock returns and introduce the 
Lindeberg condition, the weak convergence criterion to continuous time processes. We 
show that under this criterion our representation converges to a generalized version of the 
mixed jump-diffusion process in continuous time, with possibly time- or state-dependent 
parameters and independent Poisson arrivals of the jump components with any type of 
distribution for their jump amplitudes. In section 3 we present the discrete time stochastic 
dominance option pricing results and apply them to our representation of the stock 
returns. We introduce the discrete time financial market equilibrium based on the 
monotonicity of the pricing kernel under general conditions about the utility function of a 
risk averse investor and for an unspecified return distribution. We then derive the two 
martingale probability distributions, transforms of the physical return distribution, that 
define the upper and lower bounds in a multiperiod context for a distribution with time-
dependent returns within which the admissible option prices lie. These transforms are 
applied in section 4 to the discrete time representation of our return process introduced in 
section 2 in order to derive the two martingale probabilities defining the upper and lower 
bounds of admissible option prices in discrete time. We then apply the convergence 
criterion presented in section 2 to these two boundary risk neutral distributions, first for 
the simple diffusion case and then for jump-diffusion. We show that in the diffusion case 
the two bounds tend to the same limit, the BSM model, thus establishing the discrete time 
option bounds as generalizations of the Cox-Ross-Rubinstein (1979) binomial model. For 
jump-diffusion we show that the option bounds arise in closed form as solutions to two 
distinct partial differential equations. Section 5 extends these results to stock options by 
allowing the traders to hold marginal positions in individual stocks and their options, 
while the last section discusses the extension of the results to returns combining 
stochastic volatility with jumps and concludes.      
 
In the remainder of this section we complete the literature review. Jump-diffusion 
processes were first introduced into option pricing models by Merton (1976), who 
derived a unique option price by assuming that the rare event risk was fully diversifiable 
and thus not priced. This assumption was clearly untenable following the 1987 stock 
market crash, and the next generation of option pricing models reflected attempts to relax 
it. Bates, (1988, 1991) introduced a general equilibrium model with a representative 
investor with CPRA utility, a modified version of Cox-Ingersoll-Ross (CIR, 1985) that 
incorporated correlated jump-diffusion processes in both the underlying asset and the 
investor wealth. Essentially the same model was also used by Amin and Ng (1993) and 
Amin (1993).  
 
A standard feature of these valuation models was the dependence of the derived option 
prices on several parameters over and above the ones defining the jump-diffusion return 
distribution: the mean and variance of the log-amplitudes of the jump components in the 
investor wealth distribution; the covariance of these same amplitudes with the 
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corresponding measures in the return distribution; the risk aversion parameter of the 
representative investor.9 These parameters modify the jump intensity and expected log-
amplitude parameters of the physical return process. In the more general model by Liu, 
Pan and Wang (2005) of option pricing under jump-diffusion that includes uncertainty 
aversion the martingale probability used in valuing contingent claims is also modified by 
the uncertainty aversion parameters of the utility function of the representative investor.10 
 
In empirical tests the jump-diffusion model is often included in a nested model that also 
includes stochastic volatility. Many of these tests were motivated by the need to explain 
the well-known volatility smile originally documented by Rubinstein (1994); only a few 
will be mentioned here. Bates (1996) applied the nested models to Deutsche mark 
currency options, Bates (2000) to S&P 500 futures options, Pan (2002) and Rosenberg 
and Engle (2002) to S&P 500 index options, and Bliss and Panigirtzoglou (2004) to 
FTSE 100 and S&P 500 index futures options. In those tests the parameters of the 
implied risk neutral distribution are extracted from cross sections of observed option 
prices and attempts are made to reconcile these option-based distributions with data from 
the market of the underlying asset. All studies stress the importance of jump risk premia 
in these reconciliation attempts. The results of this paper, by introducing an additional set 
of requirements in the valuation of options under jump-diffusion have obvious 
implications for future empirical work.11 
 

 

II. The Stock Return Model  
 
 

We consider a market with an underlying asset (the stock) with current price tS and a 

riskless asset with return per period equal to R . There is also a European call option with 
strike price K expiring at some future time T . Time is initially assumed discrete 

0,1,...,t T= , with intervals of length t∆ , implying that 1 ( )r tR e r t o t∆= = + ∆ + ∆ , where 

r denotes the interest rate in continuous time. In each interval the underlying asset has 

returns t t t
t t

t

S S
z

S

+∆
+∆

−
≡ , whose distribution may depend on tS .

12  

 

                                                 
9 See, for instance, equation (10) in Bates (1991), equation (27) of Amin and Ng (1993), or equation (33) of 
Amin (1993). If the models are applied to index options with the index considered a proxy for investor 
wealth then the need for separate estimates of wealth distribution parameters disappears, but the risk 
aversion parameter remains in the expressions.  
10 See their equations (19)-(21). 
11 As Eraker et al (2003, p. 1294) point out, the joint estimation of parameters from both stock and option 
data does not necessarily reduce the uncertainty in the estimates, unless the jump risk premia are arbitrarily 
restricted. Our results provide objective methods of restricting such premia and, thus, improve the 
estimates. 
12 More complex dependence of the returns on other underlying state variables like, for instance, stochastic 
volatility will be discussed in subsequent sections. 
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We model the returns as a sum of two components, one of which will tend to diffusion 

and the other to a jump process. With probability 1 t tλ− ∆ the return has the following 
form13 
 

[ ( , ) ] ( , ) .t t t t J tz S t t S t tµ λ µ σ ε+∆ = − ∆ + ∆       (2.1) 

 

In this expressionε  has a bounded distribution of mean zero and variance one,  
(0,1)Dε ∼  and min max0 ε ε ε< ≤ ≤ , but otherwise unrestricted.  

 

With probability t tλ ∆ there is a jump tJ in the return. The jump is a random variable with 

distribution JtD   with mean Jtµ  and variance Jtσ . In most of the literature it is assumed 

that tJ J= and JD   is lognormal, that is ln(1 )J+ has a normal distribution. Although our 

results may be extended to allow for dependence of both jump intensity and jump 

amplitude distribution on tS , we shall adopt the assumption that the jump process is state- 

and time-independent, with ,  t tJ Jλ λ= = . On the other hand the distribution JD is 

restricted only by the requirement that the return cannot be less than -1, although we 

assume, without loss of generality, that the variable J takes both positive and negative 

values with min max1 0J J− ≤ < < . With this specification the return becomes, if we set 

( , ) ,  ( , )t t t tS t S tµ µ σ σ≡ ≡  

 

( )t t t J tz t t J Nµ λµ σ ε+∆ = − ∆ + ∆ + ∆ .     (2.2) 

 

where N is a Poisson counting process with intensityλ . An alternative representation of 
the discretization (2.2), which will also be used in the proofs, is the description of its 
outcomes 

 
( ) with probability 1

,
( ) with probability

t J t

t t

t J t

t t t
z

t t J t

µ λµ σ ε λ

µ λµ σ ε λ
+∆

 − ∆ + ∆ − ∆
= 

− ∆ + ∆ + ∆
                  (2.2a) 

 
The “traditional” approach to the pricing of index options when the index returns are 
given by (2.2) or (2.2a) is to value the options as the discounted expectations of their 
payoffs under a risk-adjusted distribution of the form 

*( * ) *t t J tz r t t J Nλ µ σ ε+∆ = − ∆ + ∆ + ∆ , where both *λ and *

Jµ have been distorted by 
the risk aversion parameterγ  of a CPRA utility function; see Bates (1991, p. 1034). In 

particular 21
* exp( (1 ) )

2
J Jλ λ γµ γ γ σ= − + + , which is approximately equal toλ if 

γ and 2

Jσ are small. For the estimated parameter values of the jump-diffusion estimates for 

the S&P 500 of the recent study of Tauchen and Zhou (2007) of 

                                                 
13 For simplicity dividends are ignored throughout this paper. All results can be easily extended to the case 
where the stock has a known and constant dividend yield, as in index options. In the latter case the 
instantaneous mean in (2.1) and (2.2) is net of the dividend yield.    
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0.13,  0.54,  0.05J Jλ σ µ= = =  the parameter *λ becomes very large for all but the 

smallest risk aversion estimates mentioned in footnote 4 of the previous section and 
corresponds to unreasonably large option values.      
 
In this section we present the conditions that establish the convergence of the processes 
described by (2.1) and (2.2) respectively to diffusion and to a mixed jump-diffusion 
process. In the next section we discuss the market equilibrium and derive the discrete 
time bounds on admissible option values supported by such equilibrium. The 
convergence criteria presented here are then applied to the processes under which these 
bounds are derived in order to find the option values under continuous time diffusion and 
mixed processes. 
 

To prove the convergence of option prices, we rely on the weak convergence of the 
underlying price process, first to a diffusion and then to a jump diffusion. For any number 

m of time periods to expiration we define a sequence of stock prices { | , }tS t m∆  and an 

associated probability measure mP . The weak convergence property for such processes14 

stipulates that for any continuous bounded function f  we must 

have [ ]( ) ( )mP m P

T TE f S E f S  →  , where the measure P corresponds to diffusion limit of 

the process, to be defined shortly. mP is then said to converge weakly to P   and  
m

TS   is 

said to converge in distribution to  TS . A necessary and sufficient condition for the 

convergence to a diffusion is the Lindeberg condition, which was used by Merton (1992) 

to develop criteria for the convergence of multinomial processes. In a general form, if tφ   
denotes a discrete stochastic process in d-dimensional space the Lindeberg condition 

states that a necessary and sufficient condition that  tφ   converges weakly to a diffusion, 
is that for any fixed  0δ >   we must have 

 
|| ||0

1
lim ( , ) 0t
t

Q d
t φ ϕ δ

φ ϕ∆− >∆ →
=

∆ ∫       (2.3) 

 

where  ( , )tQ dφ ϕ∆   is the transition probability from  tφ φ=   to  t tφ ϕ+∆ =   during the time 

interval  t∆  . Intuitively, it requires that  tφ   does not change very much when the time 
interval  t∆   goes to zero.  

 

When the Lindeberg condition is satisfied, the following limits exist 

 
|| ||0

1
lim ( ) ( , ) ( )i i t i
t

Q d
t ϕ φ δ

ϕ φ φ ϕ µ φ∆− <∆ →
− =

∆ ∫  (2.4) 

                                                 
14For more on weak convergence for Markov processes see Ethier and Kurz (1986), or Strook and 
Varadhan (1979). 
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|| ||0

1
lim ( )( ) ( , ) ( )i i j j t ij
t

Q d
t ϕ φ δ

ϕ φ ϕ φ φ ϕ σ φ∆− <∆ →
− − =

∆ ∫  (2.5) 

The conditions (2.3), (2.4) and (2.5) are equivalent to the weak convergence of the 
discrete process to a diffusion process with the generator15 

 
2

1, 1 1

1

2

d d

ij i

i j ii j ix
σ µ

φ φ= = =

∂ ∂
= +

∂ ∂ ∂∑ ∑A .      (2.6) 

By the definition of the generator, for each bounded, real valued function  f   we have 

 
0

( ) ( )
lim t t t

t

Ef f
f

t

φ φ+∆

∆ →

−
=

∆
A       (2.7) 

 

In our case the state variable vector is one-dimensional and t tSφ = . With these definitions 

we have the following result, proven in the appendix. 
 

Lemma 1. For 0λ =  the discrete process described by equation (2.1) converges 

weakly to the following diffusion (2.8), where W is a Wiener process with ( ) 0E dW = and  

( )Var dW dt=  

t
t t

t

dS
dt dW

S
µ σ= + .       (2.8) 

 

It can be easily seen that the process given by (2.2) does not satisfy the Lindeberg 
condition, since 

| | | |0 0

1 1
lim ( ) ( ) lim ( )

t t
t J

z zt t
Q dD J dD

t tδ δ
δ λ ε

> >∆ → ∆ →
= +

∆ ∆∫ ∫  

 

As shown in the proof of Lemma 1 for the diffusion case, the second integrand is zero for 

t∆  sufficiently low. However, the first integrand is strictly positive for any t∆ , implying 
that the process does not converge to diffusion in continuous time. The limit result for 
(2.2) is given by the following lemma, proven in the appendix. 

 

Lemma 2. The discrete process described by (2.2) converges weakly to the jump-

diffusion process (2.9): 

( )t
t J t

t

dS
dt dW JdN

S
µ λµ σ= − + + .      (2.9) 

Having established that (2.2) and (2.1) are valid discrete time representations of a mixed 

                                                 
15See for instance Merton (1992) for a discussion on the generators of diffusions and jump processes.  
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process and its diffusion component, we now turn to contingent claims pricing for such 
processes. 

 

III. The Option Pricing Model in Discrete Time  

 

Except for the trivial case where the random variableε  takes only two values the market 
for the stock with returns given by (2.1) is incomplete in a discrete time context. The 
same is of course true a fortiori for the stock with returns given by (2.2). The valuation of 
an option in such a market cannot yield a unique price. Our market equilibrium is derived 
under the following set of assumptions that are sufficient for our results:  

There exists at least one utility-maximizing risk averse investor (the trader) in the 
economy who holds only the stock and the riskless asset16 

 This particular investor is marginal in the option market 

The riskless rate is non-random17 

Each trader holds a portfolio of tx in the riskless asset and ty in the stock by maximizing 

recursively the expected utility of final wealth18 over the periods 0,1,..., 't T= of length t∆ . 

The current value function is ( ) [ (( ) ( )(1 ) ]
tt t t v t t t t t t tx y S Max E x v R y v z S+∆Ω + = Ω − + + + , 

where tv denotes the optimal portfolio revision or stock purchase from the riskless 

account. If the trader also has a marginal open position in a given call option with 

value ( )t tC S and with terminal condition ( )T TC S K += − at option expiration time 

'T T< 19 then the following relations characterize market equilibrium in any single 

trading period ( , )t t t+ ∆ , assuming no transaction costs and no taxes: 

1[ ( ) ] ,   [(1 ) ( ) ] 1,  

( ) [ ( (1 )) ( ) ]

t t t t t t t t

t t t t t t t t t t

E Y z S R E z Y z S

C S E C S z Y z S

−
+∆ +∆ +∆

+∆ +∆ +∆

= + =

= +
,      (3.1) 

In (3.1) ( )t tY z +∆ represents the pricing kernel, the state-contingent discount factor or 

normalized marginal rate of substitution of the trader evaluated at her optimal portfolio 
choice. Because of the assumed risk aversion and portfolio composition of our traders it 
can be easily seen that the pricing kernel would possess the following property: 

                                                 
16 This assumption is relaxed in Section V. 
17 Although this assumption may not be justified in practice, its effect on option values is generally 
recognized as minor in short- and medium-lived options. It has been adopted without any exception in all 
equilibrium based jump-diffusion option valuation models that have appeared in the literature. See the 
comments in Bates (1991, p. 1039, note 30) and Amin and Ng (1993, p. 891). In order to evaluate the 
various features of option pricing models, Bakshi, Cao and Chen (1997) applied without deriving it a risk-
neutral model featuring stochastic interest rate, stochastic volatility and jumps. They found that stochastic 
interest rates offer no goodness of fit improvement. 
18 The results are unchanged if the traders are assumed to maximize the expected utility of the consumption 
stream.  
19 All results in this paper are derived for call options. They are applicable without reformulation to 
European put options, either directly or through put-call parity.  
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Property: The pricing kernel ( )t tY z +∆ is monotone (either non-increasing or non-

decreasing) in the stock return t tz +∆ for every 0,1,...,t T= .   

 

This property is sufficient for the derivation of tight option bounds for all stock return 
distributions and not only those given by (2.2). It can be easily seen from the second 

relation in (3.1) that under such an assumption ( )t tY z +∆ must be non-increasing if the 

optioned stock is a “positive beta” one, with expected return exceeding the riskless rate, 
since this implies that the trader will always hold a positive amount of the stock. Since 
this is the case for the overwhelming majority of stocks, this is the assumption that will 
be adopted here. The same set of assumptions also underlies the stochastic dominance 
option bounds of Constantinides and Perrakis (2002, 2007) that were derived under 
general distributional assumptions and included proportional transaction costs. These 
assumptions may be restrictive for options on individual stocks, but their validity in the 
case of index options cannot be doubted, given that fact that numerous surveys have 
shown that a large number of US investors follow indexing strategies in their 
investments.20 These market equilibrium assumptions are quite general, insofar as they 
allow the existence of other investors with different portfolio holdings than the trader. 
They do not assume the existence of a representative investor, let alone one with a 
specific type of utility function. The results presented in this section are derived for 
unspecified discrete time asset dynamics, and are applied to the specific case of jump-
diffusion in the next section.      

 

A more restrictive set of market equilibrium assumptions underlies the well-known jump-
diffusion option valuation models of Bates (1988, 1991) and Amin and Ng (1993), and 
their more recent extension by Liu, Pan and Wang (2005) that include behavioral 
considerations. In the case of index options these studies assume that there is a 
representative consumer with a time-additive CPRA utility function of consumption over 
a finite or an infinite horizon.21  In all those models the indirect utility is a concave 
function of investor wealth, implying that the marginal utility is decreasing. If, as is 
commonly the case, the correlations between both diffusion and jump components of the 
stock and the wealth processes are positive then the conditional expectation of the 

marginal utility given t tz +∆ is decreasing, implying clearly that ( )t tY z +∆ is non-increasing. 

Thus, the bounds derived by our market equilibrium assumptions are also applicable to 
these earlier models as well.  

                                                 
20 Bogle (2005) reports that in 2004 index funds accounted for about one third of equity fund cash inflows 
since 2000 and represented about one seventh of equity fund assets. 

21
 In the case of stock options the market equilibrium assumptions must also include the following: both 
stock and aggregate wealth (or consumption) are jump-diffusion processes with state- and time-
independent jump component; (one plus) the percentage jump amplitudes in both wealth and stock follow a 
bivariate lognormal distribution. 
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The derivation of option pricing bounds under a non-increasing pricing kernel 

( )t tY z +∆ can be done with at least two different approaches, the expected utility 

comparisons under a zero-net-cost option strategy introduced by Perrakis and Ryan 
(1984) and the linear programming (LP) method pioneered by Ritchken (1985). In the 
former approach an option upper bound is found by having the trader open a short 

position in an option with priceC , with the amounts Cα  and (1 )Cα− added respectively 

to the riskless asset and the stock account. For the option lower bound a long position is 

financed by shorting an amount , <1tSβ β  of stock, with the remainder invested in the 

riskless asset. Both bounds are found as limits on the call priceC such that the value 
function of the investor with the open option position would exceed that of the trader who 
does not trade in the option if the write (purchase) price of the call lies above (below) the 

upper (lower) limit on C . This approach22 yields results that are identical to the ones of 
the LP approach, which is the one presented here. 

 

The distribution of the return t tz +∆ is assumed discrete, with the continuous case arising as 

the obvious limit as the number of states becomes progressively denser. We denote this 

distribution by ( )t t tP z S+∆ , which may depend on tS  in the most general case; for 

notational simplicity this dependence is suppressed in the expressions that follow. For the 

discrete distribution case at any time t the stock’s return is tjz in state j, where j is an 

index, such that  1 2 ...t t ntz z z≤ ≤  .The probabilities of the n states are 1 2, ,...,t t ntp p p . The 

pricing kernel, the state-contingent discount factors, are denoted by 1 , ,t ntY YK , and it is 

assumed that  1 2 ...t t ntY Y Y≥ ≥ ≥ . Let also ( )t tC S   and ( )t tC S denote respectively the 

upper and lower bounds on admissible call option prices supported by the market 
equilibrium (3.1), the asset dynamics and the monotonicity of the pricing kernel 
assumption.  

 

If the option price function ( ) ( (1 ))t t t t tC S C S z+∆ +∆= + is known then bounds on ( )tC S  are 

found by solving the following LP, for given distributions ( , )jt t jt tz p+∆ +∆ . This LP 

evaluates the reservation write and reservation purchase prices of the option under market 
equilibrium that excludes the presence of stochastically dominant strategies, namely 
strategies that augment the expected utility of all traders. Violations of the bounds given 
by the LP imply that any such trader can improve her utility by introducing a 
corresponding short or long option in her portfolio. 

                                                 
22 It is presented in an appendix, available from the authors on request. 
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1

1

1

1

1

1 2

max ( (1 ))  

(min  ( (1 )) )

subject to :

1 (1 )

...

jt t

jt t

j n

Y t t t jt t jt t jt t

j

j n

Y t t t jt t jt t jt t

j

n

jt t jt t jt t

j

n

jt t jt t

j

t t t t nt t

C S z p Y

C S z p Y

z p Y

R p Y

Y Y Y

+∆

+∆

=

+∆ +∆ +∆ +∆
=

=

+∆ +∆ +∆ +∆
=

+∆ +∆ +∆
=

−
+∆ +∆

=

+∆ +∆ +∆

+

+

= +

=

≥ ≥ ≥

∑

∑

∑

∑

   (3.2)       

 

Define also the following conditional expectations:  

1

1

ˆ | ,
j
i it t it t

jt t t t t t jt t tj
i it t

z p
z E z z z S

p

= +∆ +∆
+∆ +∆ +∆ +∆

= +∆

∑  = = ≤ ∑
,   1,...,j n=    (3.3) 

 

With these definitions it is clear that ˆ ˆ[ ]nt t t t tz E z S z+∆ +∆= ≡  and by 

assumption ˆ1 nt tz R+∆+ ≥ .23 Similarly we have 1 1 min,
ˆ

t t t t t tz z z+∆ +∆ +∆= = , the lowest possible 

return, which will be initially assumed strictly greater than -1. 

 

The constraints in the LP differ from the general market equilibrium relations (3.1) by the 
last set of inequalities in (3.2) that correspond to the monotonicity of the pricing kernel 
assumption. In the absence of this inequality set it can be shown that the results of the LP 
yield the well-known no-arbitrage bounds derived by Merton (1973),24 the only bounds 
on admissible option prices that rely only on absence of arbitrage and on no other 
assumption about the market equilibrium process. The following important result, proven 
in the appendix, characterizes the solution of the LP in (3.2): 

 

Lemma 3: If the option price ( )t tC S is convex for any t then it lies within the 

following bounds 

 

                                                 
23 Similar expressions as the ones presented in Lemma 3 and Proposition 1 also hold when we have a 

“negative beta”  stock, with ( )t tY z +∆ is non-decreasing and ˆ1 nt tz R+∆+ < . This case is presented in an 

appendix, available from the authors on request.  The limiting results of the next section also hold for this 
case as well, with minor modifications.  
24 See Ritchken (1985, section III). Actually, the upper bound in that LP is equal to the stock price minus 
the strike price discounted by the highest possible return; this last term goes to 0 in the multiperiod case. 
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1 1
[ ( (1 ))] ( ) ( (1 ))t tL U

t t t t t t t t t t t tE C S z C S E C S z
R R

+∆ +∆ +∆ +∆+ ≤ ≤ + ,   (3.4) 

 

where tUE and tLE denote respectively expectations taken with respect to the distributions 

 

1
1 1

1 1

1

1

ˆ ˆ1 1

ˆ ˆ ˆ ˆ

ˆ1
, 2, ,

ˆ ˆ

t t
t t t

t t t t

t t
jt jt t

t t

R z z R
U p

z z z z

R z
U p j n

z z

+∆
+∆

+∆ +∆

+∆
+∆

+∆

− − + −
= +

− −

− −
= =

−
K

,      (3.5a) 

 

1,

1
1 11, 1,

1,

1, 1
11,

ˆ 1 ˆ1
, 1,...,

ˆ ˆ ˆ ˆ

ˆ1
,  0,  1

ˆ ˆ

jt t jt th t t ht t
jt h h

k kh t t ht t kt t h t t ht t kt t

h t tht t
h t jth

kh t t ht t kt t

p pz R R z
L j h

z z p z z p

pR z
L L j h

z z p

+∆ +∆+ +∆ +∆
+

= =+ +∆ +∆ +∆ + +∆ +∆ +∆

+ +∆+∆
+ +

=+ +∆ +∆ +∆

+ − − −
= + =

− −∑ ∑

− −
= = > +

− ∑

  

  (3.5b) 

In the expressions (3.5b) h is a state index such that  1,
ˆ ˆ1ht t h t tz R z+∆ + +∆≤ − <  . 

For a continuous distribution ( )t t tP z S+∆ of the stock return the expectations are taken 

with respect to the following distributions 

min,

min,

min, min,

1

( )

( ) 1

( )

* *

( ) with probability  
( )

1 with probability

( ) ( | , ),  (1 , )

t t

t t t t

t t

t t t t t t

R z

t t t E z z

t t E z R

z E z z

t t t t t t t t t t t t t t

P z S
U z

Q

L z P z S z z E z S z z R

+∆

+∆ +∆

+∆

+∆ +∆ +∆

− −
+∆ −

+∆ + −
−

+∆ +∆ +∆ +∆ +∆


= 

≡

= ≤ + ≤ =

,   . (3.6)  

 

With this LP it can be shown that the bounds ( )t tC S   and ( )t tC S may be derived 

recursively by a procedure described in Proposition 1. This procedure yields a closed 

form solution, which relies heavily on the assumed convexity of the option price ( )t tC S , 

itself a consequence of the convexity of the payoff. The convexity property clearly holds 
for the diffusion and jump-diffusion cases examined in this paper.25  

 

Proposition 1: Under the monotonicity of the pricing kernel assumption and for a 

discrete distribution of the stock return tz all admissible option prices lie between the 

upper and lower bounds ( )t tC S   and ( )t tC S , evaluated by the  following recursive 

                                                 
25 The convexity of the option with respect to the underlying stock price holds in all cases in which the 
return distribution had iid time increments, in all univariate state-dependent diffusion processes, and in 
bivariate (stochastic volatility) diffusions under most assumed conditions; see Merton (1973) and Bergman, 
Grundy and Wiener (1996). 
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expressions 

 

( ) ( ) ( )

1
( ) [ ( (1 )) ]

1
( ) [ ( (1 )) ]

t

t

T TT T T

U
t t tt t t t t

L

t t tt t t t t

C S C S S K

C S E C S z S
R

C S E C S z S
R

+

+∆ +∆

+∆ +∆

= = −

= +

= +

 ,    (3.7) 

 

where tUE and tLE denote expectations taken with respect to the distributions given in 

(3.5ab) or (3.6). 

   

Proof: We use induction to prove that (3.7) yields expressions that form upper and lower 

bounds on admissible option values. It is clear that (3.7) holds at T and that ( )T TC S and 

( )T TC S  are both convex in TS . Assume now that ( (1 ))t t t t tC S z+∆ +∆+ and 

( (1 ))t t t t tC S z+∆ +∆+ are respectively upper and lower bounds on the convex 

function ( (1 ))t t t tC S z+∆ + , implying that 

1 1
( (1 )) ( (1 )) ( (1 ))t tt t t t t t t t t t t t tC S z C S z C S z

R R
+∆+∆ +∆ +∆ +∆ +∆+ ≤ + ≤ +    (3.8) 

  
By Lemma 3 we also have 
 

1 1
[ ( (1 ))] ( ) ( (1 ))t tL U

t t t t t t t t t t t tE C S z C S E C S z
R R

+∆ +∆ +∆ +∆+ ≤ ≤ +    

 (3.9) 

 

(3.8) and (3.9), however, imply that  

 

1 1
( ) [ ( (1 ))] ( ) ( (1 )) ( )t tL U

t tt tt t t t t t t t t tC S E C S z C S E C S z C S
R R

+∆+∆ +∆ +∆= + ≤ ≤ + = , (3.10) 

 

QED. 

 

An important special case arises when 1 min, 1t t t tz z+∆ +∆= = − , implying that the stock can 

become worthless within a single elementary time period ( , )t t t+ ∆ . In such a case the 

lower bound given by expectations taken with (3.5b) or (3.6) remains unchanged, but the 

upper bound takes the following form, with PE denoting the expectation under the actual 
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return distribution ( )t t tP z S+∆ : 

[ ( (1 )) ]
( ) ( ) ,  ( )

[1 ]

P
t t t t t t

T tT T t

t t t

E C S z S
C S S K C S

E z S

+∆ +∆+

+∆

+
= − =

+
.      (3.11) 

When the returns are iid then (3.11) corresponds to the expected payoff given tS  

discounted by the risky asset’s return. The upper bound of (3.11) has been extended to 
allow for proportional transaction costs. The same is true for the lower bound given by 
(3.6).26  

 

It can be easily seen from both (3.5ab) and (3.6) that the distributions are risk neutral, 

with (1 ) (1 )t tU L

t t t tE z E z R+∆ +∆+ = + = . These distributions were derived from the LP in 

(3.2), and are independent of option characteristics such as the strike price or time to 

expiration. Note also that the pricing kernel ( )t tY z +∆ corresponding to the upper bound 

has a “spike” at min,t tz +∆  and is constant thereafter, while the kernel of the lower bound is 

constant and positive till a value *tz  such that
*[(1 ) ]t t t t tE z z z R+∆ +∆+ ≤ = , and becomes 

zero for *

t t tz z+∆ > . These pricing kernels are boundary marginal utilities that do not 

correspond to a CPRA utility function or, indeed, to any class of utility functions with 
continuously decreasing marginal utilities.   

 

The distributions tU and tL  are the incomplete market counterparts of the risk neutral 

probabilities of the binomial model, the only discrete time complete market model. If, in 

addition to payoff convexity, the underlying asset returns are iid then tU and tL are time-

independent and independent of the stock price tS . In all cases, however, the distributions 

tU and tL  depend on the entire actual distribution of the underlying asset, and not only on 

its volatility parameter, as in the binomial and the BSM models. In particular, they 
depend on the mean ẑ of the distribution. If ˆ1 z R+ = then (3.5ab) and (3.6) imply that the 

two distributions tU and tL  coincide. As ẑ increases above 1R − the bounds widen, 

reflecting the incompleteness of the market. The dependence of tU and tL on convexity 

and on the entire return distribution may appear restrictive, but in fact the approach is 
quite general. The stochastic dominance assumptions may still be used to find the tightest 
bounds that can be supported by the market equilibrium monotonicity condition by 
solving the LP (3.2) recursively when convexity does not hold, with the bounds now 
depending in general on option characteristics. Recall that arbitrage and equilibrium 
models are able to provide expressions for option prices only under specific assumptions 
about asset dynamics. By contrast the stochastic dominance approach can accommodate 
any type of asset dynamics, including time- and state-varying distributions, provided a 
suitable discrete time representation similar to (2.2) can be found. As shown in the next 
section, the dependence on many parameters of the distribution, including ẑ in the 

                                                 
26 See Propositions 1 and 5 of Constantinides and Perrakis (2002). 
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diffusion case, disappears at the continuous time limit.   

  

We provide a numerical example of the width of the bounds for a case in which the 

underlying asset return is given by (2.1), with 0tλ = and with mean and volatility 

parameters similar to those normally prevailing in the market for the S&P 500 index. 

Let 100, 0.5tS T= = , 4%, 8%, 20%r µ σ= = = in (2.1), with the parameter 

 uniform in [ 3, 3]ε ∼ − , and consider an at-the-money call option with one period to 

expiration. The option is in the money for
0.2

0.5
ε ≥ − . Applying now equations (3.6) we 

see that the upper bound is equal to the expected payoff discounted by the riskless rate 

1.02 and multiplied by the probability1 Q− , yielding 7.772C = . For the lower bound we 

first identify the value * 1.4492ε = such that (1 *) 1.02E T T Rµ σε ε ε+ + ≤ = =  and 

then we find the lower bound as the conditional payoff expectation given *ε ε≤  

discounted by 1.02, yielding 6.537C = . These correspond to a width of 17.26% of the 

midpoint for these single period bounds, which is expected to decrease in the presence of 
intermediate trading.27 In the next section we explore the limits of the expressions in 

(3.5ab) and (3.6) when t tz +∆ is given by the continuous time processes (2.8) and (2.9).  

 

IV. Option Pricing for Diffusion and Jump-Diffusion Processes  

 

The recursive procedure described in (3.4) and (3.6) can be applied directly to the stock 

returns t tz +∆ given by (2.1) or by (2.2) in order to generate the upper and lower bounds at 

time zero. Of particular interest, however, is the existence of a limit to these bounds as  

0t∆ →   and (2.1) tends to (2.9). These limits are expressed by the following proposition 
whose proof is in the appendix. Although this proposition does not contain any new 
option pricing results, it does provide a link between the option bounds approach and the 
continuous time results that underlie most of option pricing. It is also necessary for the 
proof of the jump-diffusion results in Propositions 3 and 4, which are novel.  

 

Proposition 2: When the underlying asset follows a continuous time process described by 

the diffusion (2.8) then both upper and lower bounds (3.4)-(3.6) of a European call 

option evaluated on the basis of the discretization of the returns given by (2.1) converge 

to the same value, equal to the expectation of the terminal payoff of an option on an asset 

whose dynamics are described by the process 

 ( , )t
t

t

dS
rdt S t dW

S
σ= + , (4.1) 

                                                 
27 Numerical results for the bounds are also in Ritchken (1985) for single period lognormal returns and in 
Ritchken and Kuo (1988) for multiperiod trinomial returns. An empirical application of the bound (3.11) 
under transaction costs to S&P 500 index options is in Constantinides, Jackwerth and Perrakis (2009). 
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discounted by the riskless rate. 

 

This result establishes the formal equivalence of the bounds approach to the prevailing 
arbitrage methodology for plain vanilla option prices whenever the underlying asset 
dynamics are generated by a diffusion or Ito process, no matter how complex. Note that 
the univariate Ito process is the only type of asset dynamics, corresponding to 
dynamically complete markets, for which options can be priced by arbitrage 
considerations alone. The two bounds (3.4)-(3.6), therefore, by defining the admissible 
set of option prices for any discrete time distribution corresponding to such a dynamic 
completeness, generalize the binomial model to any type of discrete time distribution.  

 

From the proof of Proposition 2 it is clear that the result holds because at the limit the 
pricing kernels of both upper and lower bound continue to play their risk-neutralizing 
role, while their effect on the instantaneous variance of the process disappears.28 This 
property does not extend to the jump-diffusion case, as shown further on in this section.    

 

(Figure 4.1 about here) 

 

Figure 4.1 illustrates the convergence of the two bounds to the BSM value for an at-the-
money call option with K = 100 and T = 0.25 years for the following instantaneous 

annual parameters: 3%, 5% to 9%, 10%r µ σ= = = . The diffusion process was 

approximated by a 300-period trinomial tree constructed according to the algorithm of 
Kamrad and Ritchken (1991). The two option bounds were evaluated as discounted 
expectations of the payoffs under the risk neutral probabilities obtained by applying the 
expressions (3.4)-(3.6) to subtrees of the 300-period trinomial tree. Fast Fourrier 
Transforms were applied for the derivation of the terminal distributions of the underlying 
asset and the bounds, given that the returns are iid.  

 

As the figure shows, the two bounds converge to their common limit uniformly from 
below and above respectively. The speed of convergence varies inversely with the size of 
the risk premium, but convergence is essentially complete after 300 periods even for the 
largest premium of 6%. This speed of convergence may also be helpful for the cases 
where no closed-form expression for the option price exists, as in complex cases of state-
dependent univariate diffusions, like the Constant Elasticity of Variance (CEV) model.29 
In such cases valuation of the option by Monte Carlo simulation of the bounds is 

                                                 
28 Mathur and Ritchken (1999) show that the BSM option price arises as the lower bound of the LP 
program (3.2) in a single period model, in which the pricing kernel has been restricted to satisfy the 
Decreasing Relative Risk Aversion (DRRA) property; this bound does not tighten when the time interval is 
subdivided. In our case the discrete time lower bound of the LP is always lower than the one corresponding 
to DRRA since the class of admissible kernels has been restricted, but it tightens with denser subdivisions 
and becomes equal to the DRRA and the BSM model at the limit.    
29 See Cox and Rubinstein (1985, pp. 361-364). 
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certainly an alternative to an option value computed as a discounted payoff of paths 
generated by the Monte Carlo simulation of (4.1). While there may not be any 
computational advantages in going through the bounds route to option valuation, the fact 
that both upper and lower bound tend to the same limit from above and from below may 
provide a benchmark for the accuracy of the valuation, in contrast to the direct simulation 
of (4.1). 

 

Next we examine the limiting behavior of the stochastic dominance bounds that can be 
derived from the discrete time process (2.2) that was shown by Lemma 2 to tend to a 
jump-diffusion. For such a process a unique option price can be derived by arbitrage 

methods alone only if 0σ = and J takes exactly one value when a jump occurs. In such a 
case the process (2.2) is binomial and it can be readily verified that the 

distributions tU and tL  coincide, and the stochastic dominance approach yields the same 

unique option price as the binomial jump process in Cox, Ross and Rubinstein (1979). 
Otherwise, we must examine the two bounds separately. For the option upper bound we 
apply the transformation (3.6) to the discretization (2.2), taking into account that the 

variable J takes both positive and negative values, or that min max0J J< < . For such a 

process we note that as t∆  decreases, there exists h, such that for any t h∆ ≤ , the 
minimum outcome of the jump component is less than the minimum outcome of the 

diffusion component, min mint tJ t tµ σ ε< ∆ + ∆ . Consequently, for any t h∆ ≤ , the 

minimum outcome of the returns distribution is minJ , which is the value that we substitute 

for min,t tz +∆  in (3.6). With such a substitution we have now the following result, proven in 

the appendix. 

 

Proposition 3: When the underlying asset follows a jump-diffusion process described by 

(2.9) the upper option bound is the expected payoff discounted by the riskless rate of an 

option on an asset whose dynamics are described by the jump-diffusion process 

 ( ) U Ut
U Jt t t

t

dS
r dt dW J dN

S
λ λ µ σ = − + + +   (4.2) 

where, 

 
min

t
Ut

r

J

µ
λ

−
= −  (4.3) 

and U

tJ  is a mixture of jumps with intensity Utλ λ+ and distribution and mean 

 min

min

with probability

with probability

Ut

Ut

Ut

U

t

U Ut
Jt J

Ut Ut

J
J

J

J

λ
λ λ

λ
λ λ

λλ
µ µ

λ λ λ λ

+

+


= 



= +
+ +

 (4.4) 
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By definition of the convergence of the discrete time process, Proposition 3 states that the 
call upper bound is the discounted expectation of the call payoff under the jump-diffusion 

process given by (4.2), which implies that the transformed jump component U

tJ is fully 

diversifiable. We may, therefore, use the results derived by Merton (1976) for options on 
assets following jump-diffusion processes with the jump risk fully diversifiable.30 
Applying Merton's approach to (4.2) we find that the upper bound on call option prices 
for the jump-diffusion process (2.9) must satisfy the following partial differential 

equation (pde), with terminal condition ( , ) max{ ,0}T TC S T S K= − : 

 
2

2 2

2

1
( ) ( ) [ ( (1 )) ( )] 0

2

U U U

Ut Jt t Ut t

C C C
r S S E C S J C S rC

S T S
λ λ µ σ λ λ

∂ ∂ ∂
 − + − + + + + − − =  ∂ ∂ ∂

. 

(4.5) 

An important special case is when the lower limit of the jump amplitude is equal to 0, in 

which case min 1J = −  and the return distribution has an absorbing state in which the stock 

becomes worthless and 1 min, 1t t t tz z+∆ +∆= = − ; this is the case described in (3.11), in which 

as we saw the option price is the expected payoff with the actual distribution, discounted 
by the expected return on the stock. Hence, this is identical to the Merton (1976, equation 

(14)) case with r replaced by tµ , yielding 

 [ ]
2

2 2

2

1
[ ( (1 )) ( )] 0

2
t J t t

C C C
S S E C S J C S C

S T S
µ λµ σ λ µ

∂ ∂ ∂
− − + + + − − =

∂ ∂ ∂
 (4.6) 

If (4.6) holds and we assume, in addition, that the diffusion parameters are constant and 

the amplitude of the jumps has a lognormal distribution with ln(1 ) ~ ( , )J JJ N µ σ+ , the 

distribution of the asset price given that k jumps occurred is conditionally normal, with 
mean and variance 

 
2 2 2

ln(1 )k J J

k J

k
k

T

k

T

µ µ λµ µ

σ σ σ

= − + +

= +
      (4.7) 

Hence, if k jumps occurred, the option price would be a Black-Scholes expression with  

kµ  replacing the riskless rate r, or ( , , , , )k kBS S K T µ σ . Integrating (4.6) would then yield 

the following upper bound, which can be obtained directly from Merton (1976) by 

replacing r by µ . 

 
0

[ (1 ) ]
exp[ (1 ) ] ( , , , , )

!

k

J
J k k

k

T
C T BS S K T

k

λ µ
λ µ µ σ

∞

=

+
= − +∑    (4.8) 

When the jump distribution is not normal, the conditional asset distribution given k jumps 

                                                 
30 Note that we do not assume here that the jump risk is diversifiable. 
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is the convolution of a normal and k jump distributions. The upper bound cannot be 
obtained in closed form, but it is possible to obtain the characteristic function of the 
bound distribution. Similar approaches can be applied to the integration of equation (4.5), 

which holds whenever min0 1J> > − . Closed form solutions can also be found whenever 
the amplitude of the jumps is fixed as, for instance, when there is only an up and a down 
jump of a fixed size.31 A pde similar to (4.5) also holds if the process has only “up” 

jumps, in which case min 0J =  and the lowest return minz  in (3.6) comes from the 

diffusion component. In such a case the key probability Q  of (3.6) is the same as in the 

proof of Proposition 2 and (4.5) still holds with 0Utλ = , implying that the option upper 

bound is the Merton (1976) bound, with the jump risk fully diversifiable. 

 

The option lower bound for the jump-diffusion process given by (2.9) and its 

discretization (2.2) is found by a similar procedure. We apply ( )t tL z +∆  from (3.6) to the 

process (2.2) and we prove in the appendix the following result. 

 

Proposition 4: When the underlying asset follows a jump-diffusion process described by 

(2.9) , the lower option bound is the expected payoff discounted by the riskless rate of an 

option on an asset whose dynamics is described by the jump-diffusion process 

 L Lt
Jt t t

t

dS
r dt dW J dN

S
λµ σ = − + +   (4.9) 

where L

tJ  is a jump with the truncated distribution 

| tJ J J≤  

The mean L

Jtµ  of the jump and the value of tJ  can be obtained by solving the equations 

 
( | )

L

t J Jt

L

Jt t

r

E J J J

µ λµ λµ

µ

− + =

= ≤
       (4.10) 

Observe that (4.10) always has a solution since t rµ >  by assumption. The limiting 

distribution includes the whole diffusion component and a truncated jump component. 

Unlike simple diffusion, the truncation does not disappear as 0t∆ → . As with the upper 
bound, we can apply the Merton (1976) approach to derive the pde satisfied by the option 
lower bound, which is given by 

2
2 2

2

1
[ ( (1 )) ( )] 0

2

L L L

Jt t t

C C C
r S S E C S J C S rC

S T S
λµ σ λ

∂ ∂ ∂
 − − + + + − − =  ∂ ∂ ∂

 (4.11) 

with terminal condition  ( , ) max{ ,0}T T TC C S T S K= = −  . The solution of (4.11) can be 

obtained in closed form only when the jump amplitudes are fixed, since even when the 

                                                 
31See, for instance, the example in Masson and Perrakis (2000). 
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jumps are normally distributed, the lower bound jump distribution is truncated. 

 

Observe that the jump components in both ( )t tC S   and ( )t tC S are now state-dependent if 

tµ , the diffusion component of the instantaneous expected return on the stock, is state-
dependent., even though the actual jump process is independent of the diffusion. In many 
empirical applications of jump-diffusion processes, which were on the S&P 500 index 
options, the unconditional estimates are considered unreliable. On the other hand there is 
consensus that the unconditional mean is in the 4-6% range;32 this is reflected in the 
numerical results below. Observe also that for normally distributed jumps the only 
parameters that enter into the computation of the bounds are the mean of the process, the 
volatility of the diffusion and the parameters of the jump component. Hence, the 
information requirements are the same as in the more traditional approaches, with the 
important difference that the mean of the process replaces the risk aversion parameter. 

  

We present in Table 4.1 and Figure 4.2 estimates of the bounds under a jump-diffusion 
process for an at-the-money option with K = 100 and maturity T = 0.25 years for varying 
subdivisions of the time to expiration, and with the following annual parameters:  

3%, 5% to 9%, 10%, 0.3, 0.05, 7%J Jr µ σ λ µ σ= = = = = − = . Table 4.2 and Figure 4.3 

present the bounds for 7%µ =  and with the other parameters unchanged for various 

degrees of moneyness of the option. The jump-diffusion process was approximated by a 
300-time step tree built according to the method introduced by Amin (1993). The jump 
amplitude distribution was lognormal, which was truncated for numerical purposes in 
building the tree. The bounds were computed by taking the discounted expectations of the 
payoff under the time-varying risk neutral probabilities of (3.4) applied to subtrees. The 
risk neutral price is the Merton (1976) price for this process.  
 

(Table 4.1 about here) 

 

(Figure 4.2 about here) 

 

(Table 4.2 about here) 

 

(Figure 4.3 about here) 

 

The results shown in Table 4.1 show a maximum spread between bounds of about 10%, a 

spread that is an increasing function of µ . In Table 4.2 the spread is much lower for in-
the-money options and reaches about 18% for the most out-of-the money options. Note 

                                                 
32 See Fama and French (2002), Constantinides (2002) and Dimson, Marsh and Staunton (2006). 
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that the range of values of µ  implies an ex-dividend risk premium range from 2% to 7%, 
a range that covers what most people would consider the appropriate value of such a 
premium in many important cases; the corresponding width of the bounds ranges from 
4.5% to 10%. For the most commonly chosen risk premium of 4%, corresponding 

to 7%µ = , the spread at-the-money is about 7.26%. This range of allowable option prices 

in the stochastic dominance approach is the exact counterpart of the inability of the 
“traditional” arbitrage-based approaches to produce a single option price for jump 
diffusion processes without an arbitrarily chosen risk aversion parameter, even when the 
models have been augmented in this case by general equilibrium considerations. 
 

V. Extensions to Stock Options 

 
In this section we extend the set of assumptions about market equilibrium, by defining 
the risky asset held by the trader as a market index portfolio and allowing the trader to 
adopt additional marginal positions in a single stock, as well as in options on that stock. 

Let now tI denote the current value of the index and tS the value of the stock, with the 

returns t t t
t t

t

I I
z

I

+∆
+∆

−
≡  and t t t

t t

t

S S
v

S

+∆
+∆

−
≡ . The market equilibrium conditions (3.1) are 

now as follows 
 

1[ ( ) , ] ,   

[(1 ) ( ) , ] [(1 ) ( ) , ] 1,  

( , ) [ ( (1 ), (1 )) ( ) , ]

t t t t

t t t t t t t t t t t t

t t t t t t t t t t t t t t t

E Y z I S R

E z Y z I S E v Y z I S

C S I E C S v I z Y z I S

−
+∆

+∆ +∆ +∆ +∆

+∆ +∆ +∆ +∆

=

+ = + =

= + +

   (5.1) 

 
Assume now a joint discrete distribution of the two returns, and 

set [ , , ] ( )j jt tt t t t jt t t t jt tE v z z S I v z v +∆+∆ +∆ +∆ +∆= = ≡ . The equilibrium relations (5.1) imply 

certain restrictions on the parameters of the joint distribution. These are expressed by the 
following Lemma. It covers the case of diffusion and can be extended to cover jump-
diffusion for that joint return distribution. 
 

Lemma 4:  If the function ( )j jt t
zν
+∆

is linear, ( ) ,j jt t jt t
z zν θ ζ
+∆ +∆
= +  then the 

following relation must hold: 

 

( 1)(1 ) .R ζ θ− − =        (5.2) 

 

Further, if in addition [ ( (1 ), (1 )) ]t t t t t t t t t tE C S v I z z+∆ +∆ +∆ +∆+ + can be written as a function 

ˆ ( (1 ( )), (1 ))t t t t t t t tC S z I zν+∆ +∆ +∆+ + then ( , )t t tC S I takes the form ( )t tC S , independent of the 

index level tI .  

 
Proof: We write the last relation in (5.1)  
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 [ [(1 ) ( ) ] , ] [(1 ( )) ( ) , ] 1t t t t t t t t t t t t t tE E v Y z z I S E z Y z I Sν+∆ +∆ +∆ +∆ +∆+ = + = . (5.2) then follows 

directly from the first two relations in (5.1) by replacing ( )
t t
zν
+∆
. For the second part of 

the Lemma, we use induction. Since the Lemma obviously holds at T-1, we assume that it 

holds at t t+ ∆  and apply the last relation of (5.1) to ˆ ( (1 ( )))t t t t tC S zν+∆ +∆+ , QED. 

  
Assume now that Lemma 4 holds and define 
 

ˆ ˆ( ) ( ) ( )

ˆ( , ) [ ( (1 )) ],  1

ˆ( , ) [ ( (1 )) ],  1

1ˆ ( ) { ( , ) }

1ˆ ( ) { ( , ) }

t

t

T TT T T

P
t t t tt t t t t t t t

P

t t t tt t t t t t t t

U
t t tt t t t t

L

t t tt t t t t

C S C S S K

C S z E C S v z t T

C S z E C S v z t T

C S E C S z S
R

C S E C S z S
R

+

+∆ +∆+∆ +∆ +∆

+∆ +∆+∆ +∆ +∆

+∆ +∆

+∆ +∆

= = −

≡ + ≤ −

≡ + ≤ −

=

=

.    (5.3) 

The distributions ,t tU L are those given by (3.5) or (3.6) withP denoting the original 

distribution. The following result extends Lemma 3 to stock options. 
 

Lemma 5:  Under the conditions of Lemma 4, if the option price ( )t tC S is convex in tS  

then the relations (5.3) define bounds such that ˆ ˆ( ) ( ) ( )tt t t t tC S C S C S≤ ≤ . 

 

Proof:  We show that Lemma 3 holds, using again the convexity of ( )t tC S . At any 

1t T≤ − we multiply ( (1 ))t t t t tC S v+∆ +∆+  by ( )t tY z +∆ and take conditional expectations 

given t tz +∆ . The bounds on ( )t tC S  are then found by solving the following LP, which 

replaces (3.2) 

1

1

ˆmax ( (1 ( )))  

ˆ(min  ( (1 ( ))) )

jt t

jt t

j n

Y t t t jt t jt t jt t

j

j n

Y t t t jt t jt t jt t

j

C S z p Y

C S z p Y

ν

ν

+∆

+∆

=

+∆ +∆ +∆ +∆
=

=

+∆ +∆ +∆ +∆
=

+

+

∑

∑
,    (5.4) 

subject to the same constraints as (3.2) plus the additional 

constraint
1

1 (1 ( ))
n

j jt t jt t jt t

j

v z p Y+∆ +∆ +∆
=

= +∑ . If, however, the linearity condition of Lemma 4 

holds then this last constraint is redundant and any feasible solution of the LP (3.2) with 
the modified objective function satisfies also this additional constraint. Since the linearity 

condition also implies that ˆ ( (1 ( )))t t t t tC S zν+∆ +∆+ is convex in t tz +∆ , the bounds of ( )t tC S are 

found by taking expectations of ( (1 ))t t t t tC S v+∆ +∆+ with respect to the distributions ,t tU L  
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given by (3.5) or (3.6), QED.33 The proof of Lemma 5 then follows directly by using 
induction, as in the proof of Proposition 1, QED.  
     
We examine separately diffusion and jump-diffusion for both the index and the stock. For 
diffusion Proposition 5 shows that both bounds converge to the BSM option price in this 
case as well, as with index options. Define 
 

2( 1 ) ,

( ) ( ) ( ) 0

t t t t

v

t t t t

z t t

v m t t

E E E

µ σ ε

σ ρε η ρ

ε η εη

+∆

+∆

= ∆ + ∆

= ∆ + + − ∆

= = =

     (5.5) 

 

with (0,1)zDε ∼ and (0,1)Dνη ∼ . It is clear that Lemma 1 holds and both index and 

stock converge to the following bivariate diffusion 
 

1
t

t t

t

dI
dt dW

I
µ σ= + ,  2

vt
t t

t

dS
m dt dW

S
σ= + ,   (5.6) 

 

where tµ , tm are the instantaneous means, tσ , v

tσ the corresponding volatilities, and 

1 2[ ]E dW dW dtρ= . Further, Lemma 4 holds and 

 

( ) ( )t t
j jt t t t jt t t t j

t t

z m t z m t t
ν ν

ν
ρσ ρσ

ν µ ρσ ε
σ σ

+∆ +∆
= − ∆ + = ∆ + ∆ .   (5.7)   

 
We then have the following result, proven in the appendix.  
 

Proposition 5: When both the index and the underlying asset follow continuous time 

processes described by the bivariate diffusion (5.6) then both upper and lower bounds 

(3.4)-(3.6) of a European call option evaluated on the basis of the discretization of the 

returns given by (5.5) converge to the same value, equal to the expectation of the 

terminal payoff of an option on an asset whose dynamics are described by the process 

 

vt
t

t

dS
rdt dW

S
σ= + .     (5.8) 

 
Next we examine the jump-diffusion case. We model it as a mixture, in which the 

diffusion returns ,D t tz +∆ and ,D t tv +∆ occur with probability1 t tλ− ∆ as given by  

                                                 

33 In evaluating ,t tU L  the terms ˆ( )
t t
zν
+∆

and 
min,
( )

t t
zν

+∆
should replace

t̂ t
z
+∆
and

min,t t
z

+∆
.  
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,

2

,

( )

( ) ( 1 )

D t t t JI t

v

D t t t JS t

z t t

v m t t

µ λµ σ ε

λµ σ ρε η ρ

+∆

+∆

= − ∆ + ∆

= − ∆ + + − ∆
.    (5.11) 

With probability t tλ ∆ there are correlated jumps ItJ and StJ in both index and stock 

returns ,J t tz +∆ and ,J t tv +∆ . We shall again adopt the assumption that the jump process is 

state- and time-independent, with ,  ,  t It I St SJ J J Jλ λ= = = . The jumps are random 

variables with means JIµ  and JSµ , and standard deviations JIσ and JSσ . We model the 

mutual dependence of the jumps by setting 
 

 ln(1 )I JI JIJ µ σ+ = + Χ ,  2ln(1 ) 1S JS JS JSJ µ ψσ ψ σ+ = + Χ + − Ψ ,   (5.12) 

 

where the independent random variables Χ and Ψ have distributions JD Χ and JD Ψ with 

mean 0 and variance 1, not necessarily normal. As with the index options, we assume that 

min min max1 exp( ) 1 0I JI JI IJ Jµ σ− ≤ = + Χ − < < , min max1 0S SJ J− ≤ < < , and we similarly 

define 
 

2ln(1 ) [ 1 ) ]SI JS JS JS JS JSJ E µ ψσ ψ σ µ ψσ+ ≡ + Χ + − Ψ Χ = + Χ ,  (5.13)  

 

with min min1 exp( ) 1SI JS JSJ µ ψσ− ≤ = + Χ − . Lemma 2 obviously applies to these 
discretizations as well, and both index and stock returns tend to jump-diffusion asset 
dynamics similar to (2.9). 
 

1 2( ) ,   ( ) ,vt t
t JI t I t JS t S

t t

dI dS
dt dW J dN m dt dW J dN

I S
µ λµ σ λµ σ= − + + = − + +  (5.14) 

with 1 2( )E dW dW dtρ=  and the joint distribution of the amplitudes given by (5.12). 

Similarly, Lemma 4 holds here as well, since both ,D t tv +∆ and ,J t tv +∆ are linear functions of 

,D t tz +∆ and ,J t tz +∆ respectively. The following result, proven in the appendix, extends 

Propositions 3 and 4 to stock options. 
 

Proposition 6: When both the index and the underlying asset follow a jump-diffusion 

process described by (5.13) the upper option bound is the expected payoff discounted by 

the riskless rate of an option on an asset whose dynamics are described by the jump-

diffusion process 

2

m

min

min

( )
[ ( ) ] ,  ,

with probability
 ,  

with probability

Ut
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Ut

U v Ut t
Ut tJS t tS Ut

t SI in

S
U UUt
tJS JS SI tS

Ut Ut SI

dS m r
r dt dW J dN

S J

J
J J

J

λ
λ λ

λ
λ λ

λ λ µ σ λ

λλ
µ µ

λ λ λ λ

+

+

−
= − + + + = −


= + = 

+ + 

  (5.15) 

 As for the lower option bound, it is the expected payoff discounted by the riskless rate of 
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an option on an asset whose dynamics are described by the jump-diffusion process 

2 ,L v Lt
tJS t tS

t

dS
r dt dW J dN

S
λµ σ = − + +      (5.16) 

where L

tSJ is a jump process defined from (5.12)-(5.13) as follows 

2

t

ˆln(1 ) 1 ,   

ˆ ,     

L L t

tS tJS JS JS

t
L

t JS tJS

J

m r

µ ψσ ψ σ

λµ λµ

+ = + Χ + − Ψ

Χ = Χ Χ ≤ Χ − + =
.     (5.17) 

 
Proposition 6 yields the bounds for the stock options as functions of the parameters of the 
joint jump distribution of the index and the stock, as well as the volatility and mean of the 
stock diffusion component. With the exception of the mean, these are the same 
parameters as the ones required to value options in the conventional equilibrium-based 
models. Unlike these models, the bounds in Proposition 6 do not require a lognormal 
distribution of the jump amplitude. As with the index options, both upper and lower 
bound can be expressed as the solutions of pde’s similar to (4.5) and (4.11), while the 
upper bound is available in closed form with an equation similar to (4.8) whenever the 
distribution of the jump amplitude is lognormal.       
 
 

VI. Extensions and Conclusions 

 

 
The results presented in the previous section yield bounds for jump-diffusion option 
prices that are relatively simple to compute and reasonably tight for most empirically 
important cases. The alternative approach of using an assumed value of the risk aversion 
parameter to price the option induces, as can be easily verified, a much wider range of 
admissible option prices if that parameter is allowed to vary over its relevant range from 
1 to more than 40. The bounds can also accommodate state-dependent diffusion 
parameters, even though their computation would be difficult. If the upper (lower) option 
bound is violated by observed market prices then there exist portfolios involving the 
option, the stock and the riskless asset that improve the expected utility of any risk averse 
trader by adopting a short (long) position in the mispriced option.34  
   
Computational difficulties are also likely to arise in the main extension of the jump-
diffusion option models presented in this paper, the incorporation of stochastic volatility 
(SV) into the stock returns. This introduces an additional source of systematic risk, which 
can be handled either by arbitrage or by equilibrium considerations. We sketch below an 
extension of our approach to the pricing of jump risk that can incorporate SV, provided 
its systematic risk implications are handled outside our model.35 
 

                                                 
34 These portfolios are evaluated for both diffusion and jump-diffusion in an appendix, available from the 
authors on request.  
35 See the discussion in Oancea and Perrakis (2007). 
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In a combined SV and jump-diffusion process the stock returns are still given by (2.9) but 

the volatility tσ is random and follows a general diffusion, often a mean-reverting 
Ornstein-Uhlenbeck process.36 In our case we use a general form with an unspecified 

instantaneous mean 2( )tm σ and volatility 2( )ts σ . The asset dynamics then become 

 

1

2 2 2 2

2 1 2

( )

( ) ( ) ,    ( )

t
t J t

t

t t t t

dS
dt dW JdN

S

d m dt s dW dW dW dt

µ λµ σ

σ σ σ ρ σ

= − + +

= + =

       (6.1) 

 
The following discrete representation can be easily shown by applying Lemmas 1 and 2 
to converge to (5.1):37  
 

2 2 2 2

( ) / ( )

( ) ( )

t t t t t t t t

t t t t t

S S S z S t t J N

m t s t

µ σ ε

σ σ σ σ η
+∆ +∆

+∆

− ≡ = ∆ + ∆ + ∆

− = ∆ + ∆
,    (6.2) 

 

where η  is an error term of mean 0 and variance 1, and with correlation  2( )tρ σ   between  

ε   and η . In what follows we shall assume that this correlation is constant. 
 
Under reasonable regularity conditions the pricing kernel at time t conditional on the state 

variable vector ( , )t tS σ is monotone decreasing. Similarly, for any given tσ the option 
price is convex in the stock price.38 Hence, for any given volatility path over the interval 

[0, ]T to option expiration the option prices at any time t are bound by the expressions 

( , )t t tC S σ   and ( , )t t tC S σ given in (3.5ab)-(3.7). Since both of these expressions are 

expected option payoffs under risk neutral distributions, we can apply arbitrage methods 

as in Merton (1976) to price the options given a price ( , , )t tS tξ σ for the volatility risk. 

Proposition 3 and 4, therefore, hold and the admissible option bounds satisfy the 
following pde’s: 
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m S t E C S J C S rC
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σ ξ σ λ λ
σ

∂ ∂ ∂ ∂ ∂ − + − + + +  ∂ ∂ ∂ ∂ ∂ ∂

∂
+ − + + + − − =

∂

 (6.3) 

 

                                                 
36 See Heston (1993). 
37 In (2.3)-(2.7) the vector tφ in applying the Lindeberg condition is now two-dimensional, 2( , )t tS σ . 
38 See the results of Bergman, Grundy and Wiener (1996) for a bivariate diffusion. 
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2 2
2 2 2

2 2

2
2 2 2

2 2 2

1
( )

2

1
( ) [ ( ) ( , , )] [ ( (1 )) ( )] 0

2

L

Jt t t t

t

L L

t t t t t

t t

C C C C
r S S s

S T S S

C C
s m S t E C S J C S rC

λµ σ ρσ σ
σ

σ σ ξ σ λ
σ σ

∂ ∂ ∂ ∂
 − − + +  ∂ ∂ ∂ ∂ ∂

∂ ∂
+ + − + + − − =

∂ ∂

   (6.4) 

 
The estimation of (6.3)-(6.4) under general conditions presents computational challenges 
that lie outside the scope of this paper.  
 
Last, the discrete time approach of the bounds estimation allows two significant 
extensions to jump-diffusion option pricing: the valuation of American options and the 
incorporation of proportional transaction costs in trading the underlying asset. The first 
extension is obvious, due to the discrete nature of the bounds. For the second extension 
we note, for instance, that the upper bound given in (4.8) for lognormally distributed 
jump amplitudes under constant diffusion parameters is also valid in the presence of 
proportional transaction costs if it is multiplied by the roundtrip transaction cost; see 
Proposition 1 in Constantinides and Perrakis (2002). Similar extensions may also be 
feasible for the lower bound of (4.11) (Proposition 5 of the same paper), although the 
limiting form of that result is not available and is still under study.    
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Appendix 

Proof of Lemma 1 

The proof is similar to the one used by Merton (1982), the only difference being that ε  is 
now a bounded continuous random variable rather than a multinomial discrete one. 

Denote ( )tQ δ  the conditional probability that | |t t tφ φ δ+∆ − > , given the information 

available at time t . Since ε  is bounded, define min maxmax | | max(| |, | |)ε ε ε ε= = . For any 

( ) 0tδ > , define ( )h δ  as the solution of the equation 

.t th hδ µ σ ε= +  

This equation admits a positive solution 

2 2 4
.

2

t t t

t

h
σ ε σ ε µ δ

µ
− + +

=  

 For any ( )t h δ∆ <  and for any possible t tφ +∆  , 

| | | |t t t t t t tt t h hφ φ µ σ ε µ σ ε δ+∆ − = ∆ + ∆ < + =  

so ( ) Pr(| | 0t t t tQ δ φ φ δ+∆= − > ≡  whenever t h∆ <  and hence 

0

1
lim ( ) 0t
t

Q
t

δ
∆ →

=
∆

 

 The Lindeberg condition is thus satisfied. Equations (2.4) and (2.5) are satisfied by the 
construction of this discrete process, so the diffusion limit of (2.1) is (2.8), QED. 

Proof of Lemma 2 

We prove the convergence of the discretization (2.2) in the i.i.d. case39 

,  ,  .t J t tJ Jµ λµ µ σ σ− = = =  Convergence in the non-i.i.d. case follows from the 

convergence criteria for stochastic integrals, presented in Duffie and Protter (1992). It is 
shown in an appendix, available from the authors on request. 

The characteristic function of the terminal stock price at time T for a $1 initial price under 
the jump-diffusion process (2.9) is 

 

2 2
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2 2
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∞

=

= − −

= − −

∑
 (A.1) 

where ( )Jϕ ω is the characteristic function of the jump distribution. The first exponential 

corresponds to the diffusion component and the second to the jump component.  

                                                 
39 The proof is similar to that of Theorem 21.1in Jacod and Protter (2003).  
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The characteristic function of the discretization (2.2) is  

 ( ) ( ( ) 1 )[exp( ) ( )],Jt t i t tεϕ ω λ ϕ ω λ ωµ ϕ ωσ= ∆ + − ∆ ∆ ∆  (A.2) 

where ( )εϕ ω  is the characteristic function of ε.40 Since the distribution of ε has mean 0 
and variance 1, we have 
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By the Taylor expansion of ( )εϕ ω , we get 
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where ( ) 0h ω →  as 0.ω →  The multiperiod convolution has the characteristic function 
/( )T tϕ ω ∆ . Taking the limit, we have  
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(A.3) 

after applying l’Hospital’s rule. (A.3) is, however, the same as (A.1), the characteristic 
function of (2.9), and Levy’s continuity theorem41 proves the weak convergence of (2.2) 
to (2.9), QED. 

 

Another way to characterize the limit process is its generator. Denote by Dtz  the diffusion 

component and by Jtz  the jump component of the return process.  From equations (2.6) 

and (2.7), we have 
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40 If, instead of (2.2) we have a mixture of the diffusion and jump components then the characteristic 

function becomes ( ) ( ) (1 )[exp( ) ( )]Jt t i t tεϕ ω λ ϕ ω λ ωµ ϕ ωσ= ∆ + − ∆ ∆ ∆ . The multiperiod 

convolution, however, still converges to (A.3).  
41 See for instance Jacod and Protter (2003), Theorem 19.1. 
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which gives us the generator of the price process described by (2.9).  

Proof of Lemma 3 

 
The proof follows closely Ritchken (1985), with the important modification that the 

lowest stock return is bound away from bankruptcy ( 1 1t tz +∆ > − ). Since ( )t tY z +∆ is non-

increasing and 1 2 ...t t t t nt tY Y Y+∆ +∆ +∆≥ ≥ ≥ , we may set   

1, 1 1 1,  ,..., ... ,  0,  1,...,nt t n n t t n n t t n jY Y Y j nχ χ χ χ χ χ+∆ − +∆ − +∆= = + = + + ≥ = and replace into 

(3.2). We also define  
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     (A.4) 
 
Replacing (A.4) into (3.2) and taking into account the definitions in (3.3) we see that the 
LP takes now the following form: 
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max Y c Y c
R

= =

= =
∑ ∑ ,  

 
subject to 

1

1
j n

j

j

Y
=

=

=∑ ,     
1

ˆ(1 )
j n

j jt t

j

Y z R
=

+∆
=

+ =∑ ,   0jY ≥ ,  1,...,j n=     (A.5) 

 
To show that the solution of (A.5) is given by the expressions in (3.4)-(3.5ab) we invoke 

the following property: if ( (1 ))t t t t tC S z+∆ +∆+ is convex in t tz +∆ for any given tS then the 

function ˆ( )j jt tc z +∆ is convex over the points ˆ , 1,...,jt tz j n+∆ = .42 The solution of (A.5) will 

first be derived graphically and then will be shown to be the optimal solution of the LP in 

(A.5) by using the dual formulation of the LP. The graph of jc  plotted as a function of 

ˆ
jtz is shown in Figure A.1. The first and last constraints indicate that all admissible 

solutions of (A.5) must lie within the convex hull of the points on the graph. Further, the 
second constraint dictates that it should lie on the vertical line emanating from the point 
1R − on the horizontal axis, as shown in Figure A.1. 

 
The optimal solution of (A.5) and, hence, of (3.2) can be easily visualized from Figure 
A.1. For instance, the upper bound is equal to 
 

                                                 
42 See Ritchken (1985, p. 1227). 
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 1 11 1

1 1
[ ] [ ( (1 )) [ ( (1 )) ]]P

n nn t t t t t t t t t t tY c Y c Y C S z Y E C S z S
R R

+∆ +∆ +∆ +∆+ = + + + .   (A.6) 

 
Replacing into the constraints of (A.5) and solving we find that the optimal solution of 
the LP is equal to 
 

 11

1

1 1

1 1 1 1

ˆ ˆ ˆˆ1 ( 1) (1 )1 1 1 ( )
[ ] [ ]
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

nnt t t t
n

t t t t t t t t

R z z c z cz R R c c
c c

R z z z z R z z z z

+∆ +∆

+∆ +∆ +∆ +∆

− − + − ++ − −
+ = +

− − − −
. (A.7) 

 
To show that this is, indeed, the solution of the maximization problem in (A.5) we 
consider its dual 
 

1 2, 1 2

1
[min ( )]u u u u R

R
+  

 
subject to 
 

1 2 1 2
ˆ(1 ) ,   ,   unrestrictedjjt tu u z c u u+∆+ + ≥ ,    1,...,j n= .   (A.5)’  

 

It suffices to show that the solution 1 11
1 2

1 1

ˆ ˆ( 1) (1 )
,  

ˆ ˆ ˆ ˆ

n nt t

t t t t

z c z c c c
u u

z z z z

+∆

+∆ +∆

+ − + −
= =

− −
, which is 

feasible in the primal and is conjectured to be the optimal objective function in (A.7), is 
also feasible in the dual. Replacing this solution into the constraints of (A.5)’and 

invoking the convexity of ˆ( )j jt tc z +∆ we find that the inequalities 1 2
ˆ(1 ) jjt tu u z c+∆+ + ≥ are 

satisfied for all 1,...,j n= . Hence, (A.7) is the upper bound in (A.5), and it can be easily 

seen that this upper bound value corresponds to 
1

[ ( (1 )) ]U

t t t t tE C S z S
R

+∆ + as in (3.4)-

(3.5a), QED. An identical proof also holds for the lower bound (3.4)-(3.5b). The proof 

can be extended without reformulation to the case where the distribution ( )t t tP z S+∆ is 

continuous, by discretizing the distribution into equally spaced intervals t tz +∆∆ , applying 

the relations (3.4)-(3.5) and then letting t tz +∆∆ tend to zero, in which case the bounds are 

given by (3.4)-(3.6).43  

 

(Figure A.1 about here) 

 

                                                 
43 We may impose the requirement that the pricing kernel be continuously decreasing in t tz +∆ by replacing 

in (A.5) the nonnegativity constraints by 0,  1, ...,jY j nδ≥ > = , where δ is a parameter. It can then be 
easily shown that the LP would yield upper and lower bounds that are, respectively, decreasing and 

increasing functions ofδ , becoming for 0δ = equal to the bounds in (3.4)-(3.5ab); the latter are thus the 

limits of the option bounds for strictly decreasing pricing kernels.   
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Proof of Proposition 2 

 

Under the upper bound probability given by (3.5a) or (3.6), the returns process becomes 

min,

with probability 1
,

with probability

t t
t t

t t

z Q
z

z Q

+∆
+∆

+∆

−
= 


 

where Q   is the following probability 

min,

minmin

ˆ

ˆ( )

( )

t

t t

t

tt t t

z r t
Q

z z

t r t r
t

t t t

µ µ
σ εµ µ σ ε

+∆

− ∆
=

−

∆ − ∆ −
= = − ∆

∆ − ∆ + ∆

 

From the definition of t tz +∆  given in (2.1) we get 

 
min

with probability 1
( , ) ( , )

with probability
t t t t

Q
z S t t S t t

Q

ε
µ σ

ε
+∆

−
= ∆ + ∆ 


 (A.8) 

The random component of the returns in (A.8) has a bounded discrete or continuous 
distribution, so by Lemma 1 the upper bound process satisfies the Lindeberg condition. 
The upper bound distribution (A.8) has the mean 
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min

min

min

min

[ ] (1 )( ) [ ]

( )

( )

tU t
t t t t

t

t
t

t

t
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r
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t t
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t t t r t

µ
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σ ε

µ
σ ε

σ ε

µ
µ σ ε

σ ε
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= ∆ + + ∆ ∆

−
− ∆ ∆

−
= ∆ − ∆ ∆ = ∆

 

Its variance is 

2

min

2

min

min

2 2

min

min min

2

[ ] 1 [ ]

( )

1 ( )

( )

tU t
t t t

t

t

t

t t
t

t t

t

r
Var z t t Var

r
t o t

r r
t t t o t

t o t

µ
σ ε

σ ε

µ
ε

σ ε

µ µ
σ ε

σ ε σ ε

σ

+∆

 −
= ∆ + ∆ 

 

−
− ∆ + ∆



 − −
= ∆ + ∆ − ∆ + ∆ 

 

= ∆ + ∆

 

Consequently, the upper bound process converges weakly to the diffusion (4.1), QED. 
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We prove the convergence of the lower bound for the case given by (3.6), under a 

continuous probability distributionD  of ε . A different proof applies to the discrete case 
given by (3.5b), which is based on the fact that for a sufficiently low t∆ we 
have 1, ,

ˆ ˆ ˆ1n t t n t t t tz R z z− +∆ +∆ +∆< − < = in (3.5b); it is in an appendix available from the authors 

on request. The transformed returns process becomes 

ˆ( , ) ( , ) ,t t t t t tz S t t S t tµ σ ε+∆ +∆= ∆ + ∆  

where t̂ tε +∆  is a truncated random variable ˆ{ | }t t tε ε ε+∆ ≤ , with tε  found from the 

condition [ ]tL

t tE z r t+∆ = ∆ . Since t̂ tε +∆  is truncated from a bounded distribution the 

Lindeberg condition is satisfied. The risk neutrality of the lower bound distribution 
implies that 

ˆ[ ] ,t t t tt tE r tµ σ ε +∆∆ + ∆ = ∆  

 and the mean of t̂ tε +∆  is  

 ˆ[ ] t
t t

t

r
E t

µ
ε

σ+∆

−
= − ∆  (A.9) 

Since this random variable is drawn from a distribution that is truncated from the 

distribution D  of ε  we get 

 
min min

1 1
ˆ[ ] ( ) ( )

Pr( ) ( )

t t t
t t

t t t t

r
E dD dD t

D

ε ε

ε ε

µ
ε ε ε ε ε

ε ε ε σ+∆

−
= = = − ∆

< ∫ ∫  (A.10) 

From (A.10) we can easily see that  
 

ˆ ˆ[ ] [ ]
0

( ) ( )
t t t t t

t

dE dE d

d t d d t

ε ε ε
ε

+∆ +∆= <
∆ ∆

.      (A.11) 

Since the first term in the product is clearly positive, it follows that 0
( )

td

d t

ε
<

∆
. For every 

t∆ , therefore, there exists a value ( )t tε ∆ solving (A.10), which is a decreasing function 

of t∆ . By assumption we have [ ] 0E ε = , implying that 

 
max max

min min

( ) ( ) ( ) 0,
t

t

dD dD dD
ε ε ε

ε ε ε
ε ε ε ε ε ε= + =∫ ∫ ∫  (A.12) 

with max 0ε > . Since 0
( )

td

d t

ε
<

∆
 from (A.11), there exists a value t δ∆ = such that 

max0 ( )t tε δ ε ε≤ ≤ ≤ , for any t δ∆ < . From (A.9)-(A.12) ,we get 
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max

1
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1
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Pr( ) ( ) Pr( )
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−
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<

≥
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∫

∫  (A.13) 

From the last inequality of (A.13) we get 

 Pr( ) ( ).
( )

t

t

t

t

r

t r

t

t
O t

t

µ
σ

µ
σ

ε ε
ε δ

−

−

∆
> ≤ = ∆

+ ∆
 (A.14) 

(A.14) implies that as 0t∆ →  the probability that tε ε>  tends to zero. Therefore, the 

limit lower bound distribution contains all the possible outcomes ofε  . This result is used 
to compute the limit of the variance of t̂ tε +∆   

min

max

min

2 2

0 0

2

2
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∫

∫

   (A.15) 

where the third equality in (A.15) applies the conclusion derived from (A.14) and the last 
equality uses the fact that 

max

min

2( ) ( ) 1Var dD
ε

ε
ε ε ε= =∫  

 It follows that 

2 2[ ] ( )tL

t t tVar z t O tσ+∆ = ∆ + ∆  

 The diffusion limit is, therefore, the process described by equation (4.1), QED. 

Proof of Proposition 3 

As with Proposition 2, we consider the multiperiod discrete time bounds of section 3, 
obtained by successive expectations under the risk-neutral upper bound distribution. We 

then seek the limit of this distribution as 0t∆ → . Ignoring terms ( )o t∆ , the probability Q 

used in equation (3.6) is given by 

 

min min

( ) ( )
,

( ) max( )

t t t
Ut

t t t

E z r t r t
Q t

E z J t t J

µ
λ

µ σ ε
+∆

+∆

− ∆ − ∆
= = = ∆

− ∆ − ∆ −
 

 where 
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min

,t
Ut

r

J

µ
λ

−
= −  

Observe that Utλ  is always positive since min 0J <  and ( )t tE z r t+∆ > ∆ . Hence, the discrete 
time upper bound process is, by (2.2) and (3.6) 

,

, min

with probability 1
,

with probability

D t t Ut

t t

D t t Ut

z J N t
z

z J t

λ
λ

+∆
+∆

+∆

+ ∆ − ∆
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 The outcomes of this process and their probabilities are as follows: 

 

,

, ,

, min

with probability (1 )(1 ),

with probability (1 ),

with probability .
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+∆ +∆

+∆

 − ∆ − ∆


= + ∆ − ∆
 + ∆

 

By removing the terms in ( )o t∆  , the upper bound process outcomes become 

 
,

,

with probability 1 ( )
,

with probability ( )

D t t Ut

t t U

D t t t Ut

z t
z

z J t

λ λ
λ λ

+∆
+∆

+∆

− + ∆
=  + + ∆

  (A.16) 

where U

tJ  is given by (4.4). This process, however, corresponds to (4.2), QED.  

The generator of the price process, which is also reflected in equation (4.5), is  

2
2 2

2

( )

1
( ) [ ( (1 )) ( )].

2

U U

Ut J

U U
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f f
f r S
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S E f S J f S
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λ λ µ

σ λ λ

∂ ∂
 = − + +  ∂ ∂

∂
+ + + + −

∂

A

 (A.17) 

 

Proof of Proposition 4 

 

The proof is very similar to those of Lemma 2 and Proposition 3. Assuming, for 

simplicity, that both ε and J have continuous distributions, we may apply equation (3.6). 
From the proof of Lemma 1, it is clear that as 0t∆ → all the outcomes of the diffusion 

component will be lower than tJ . Therefore, the limiting distribution will include the 

whole diffusion component and a truncated jump component. The maximum jump 
outcome in this truncated distribution is obtained from the condition that the distribution 
is risk neutral, which is expressed in (4.10). We observe that the lower bound distribution 

over ( , )t t t+ ∆  is the sum of the diffusion component and a jump of intensity λ  and log-

amplitude distribution ,LtJ  the truncated distribution { | }tJ J J≤  . 
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− ∆
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By Lemma 2 this process converges weakly for 0t∆ →  to the jump-diffusion process 
(4.9), QED. The generator of the price process is 

 
2

2 2

2

1
[ ( (1 )) ( )].

2

L L

Jt

L L
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S t
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∂ ∂
 = − +  ∂ ∂

∂
+ + + −

∂

A

 (A.18) 

which appears in equation (4.11). 

 

Proof of Proposition 5 

 

Since Lemma 4 holds and ( )t tC S is convex, Lemma 5 holds as well, and the option price 

lies within the set of bounds given by (5.3). We then consider the limit of these bounds 

as 0t∆ → , as in the proof of Proposition 2.   
 

Assume for simplicity that the distributions of bothε andη are continuous. It then follows 
from (5.3) and (5.5) that the two bounds are given by recursive expectations of the option 
payoff, taken with respect to the following distributions, which replace (3.6), with 

tU and tL the same distributions as those given by (3.6).  

 
ˆ ˆ( ) ( ) ( ),   ( ) ( ) ( )t t v t t t t t v t t tU v D U z L v D L zη η+∆ +∆ +∆ +∆= = .    (A.19) 

   
The rest of the proof follows along the lines of the proof of Proposition 2. It is easy to 

show that 
ˆ ˆ
[ ] [ ]t tU L

t t t tE v E v r t+∆ +∆= = ∆ , taking into account (5.5) and (5.10). Further,  
ˆˆ 2 2 2 2[ ] (1 ) ( ( )),  [ ] (1 ) ( ( ))t t t tU U l Lv v

t t t t t t t t t tVar v t Var v z Var v t Var v zσ ρ σ ρ+∆ +∆ +∆ +∆= − ∆ + = − ∆ + i

mplying that 
ˆˆ 2[ ] [ ] ( )t tU l v

t t t t tVar v Var v t o tσ+∆ +∆= = ∆ + ∆ as in the proof of Proposition 2, 

thus completing the proof.  
 

Proof of Proposition 6 

 
Since Lemma 5 obviously holds, the option bounds are found from the limits of relations 

(5.3) as 0t∆ → . Note that the distributions ,t tU L in (5.3) apply to the conditional 

expectations of the options given t tz +∆ , or given ,D t tz +∆ and ,J t tz +∆ . The conditional 

expectations of the stock returns form the mixture 
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( )
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∆
.   (A.20) 
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For the upper bound, as with the proof of Proposition 3 and ignoring terms ( )o t∆ , the 

probability Q used in equation (3.6) is given by 

min min

( ( )) ( )
,

( ( )) max( )
t

t t t
Ut

t t SI t SI

E z r t m r t
Q t

E z J m t t Jν
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ν σ ε
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= = = ∆

− ∆ − ∆ −
  

and the discrete time upper bound process is, by (5.11)-(5.12) and (3.6), 

,
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. 

As with the proof of Proposition 3, by removing the terms in ( )o t∆ this process becomes  

,

,

with probability 1 ( )
,

with probability ( )

D t t Ut

t t U

D t t tS Ut

v t
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where U

tSJ is given by (5.15). For 0t∆ → this process becomes (5.15), QED. A similar 

proof holds for the lower bound, virtually identical to the proof of Proposition 4. Since 

for 0t∆ → all outcomes of the diffusion component in the conditional distribution of 

t tv +∆ will be lower than the jump component corresponding to
tΧ . Hence, the lower bound 

distribution over ( , )t t t+ ∆  is the sum of the diffusion component and a jump of 

intensityλ  and log-amplitude distribution ,LtSJ  the truncated distribution{ }
t

SJ Χ ≤ Χ . 

This, however, tends to (5.16) for 0t∆ → , QED. 
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Table 4.1 

  

µ=0.09 µ=0.07 µ=0.05 Number of 
periods Upper Lower Upper Lower Upper Lower 

Risk 
Neutral 

1 3.4606 2.0066 3.1376 2.1014 2.8309 2.2096 2.4107 

2 3.4599 2.0781 3.1372 2.1552 2.8307 2.2424 2.4107 

3 3.4596 2.1194 3.1369 2.1867 2.8305 2.2627 2.4107 

4 3.4578 2.1461 3.1357 2.2073 2.8299 2.2765 2.4107 

5 3.4542 2.1642 3.1334 2.2225 2.8286 2.2864 2.4107 

6 3.45 2.1809 3.1307 2.2335 2.8272 2.2937 2.4107 

10 3.4303 2.2187 3.1182 2.2641 2.8204 2.3142 2.4107 

12 3.4197 2.231 3.1115 2.2735 2.8168 2.3196 2.4107 

15 3.4036 2.2463 3.101 2.2846 2.8112 2.3277 2.4107 

20 3.3764 2.2618 3.0832 2.2968 2.8018 2.3364 2.4107 

25 3.3491 2.276 3.0654 2.307 2.7923 2.3419 2.4107 

30 3.3217 2.2829 3.0474 2.3148 2.7823 2.3464 2.4107 

50 3.2143 2.3091 2.9766 2.3328 2.7433 2.3562 2.4107 

60 3.1619 2.3141 2.942 2.3387 2.7242 2.3629 2.4107 

75 3.0862 2.3165 2.8915 2.3419 2.6961 2.367 2.4107 

100 2.9758 2.3362 2.8162 2.3515 2.6534 2.3682 2.4107 

150 2.823 2.3486 2.7084 2.3652 2.5901 2.3814 2.4107 

300 2.6311 2.3817 2.5695 2.3882 2.5059 2.395 2.4107 

 
 

Table 4.2 

 

Strike 
Upper 

Bound 

Lower 

Bound 

Risk 

Neutral 

95 6.1155 6.0023 6.0119 

96 5.2916 5.1575 5.1701 

97 4.518 4.365 4.3808 

98 3.8025 3.6345 3.6531 

99 3.1514 2.9736 2.9946 

100 2.5695 2.3882 2.4107 

101 2.0594 1.8811 1.904 

102 1.6213 1.4521 1.4743 

103 1.2529 1.0977 1.1184 

104 0.9499 0.8122 0.8306 

105 0.7062 0.588 0.6036 
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Figure 4.1 
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Figure 4.2 

 
Figure 4.3 
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Figure A.1 
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