
HeroSVM Support Vector Machine User Guide
version 2.1 (August, 2005)

Jianxiong Dong, Ph.D.
Centre for Pattern Recognition and Machine Intelligence
Concordia University, Montreal Quebec, Canada

1

Copyright Information

Manual Copyright c©2005 Jianxiong Dong
Software Copyright c©2005 Jianxiong Dong
Visual C++ is microsoft registered trademark. Visual C++ is a software development

platform.
This software can be used for research over the world and is free of charge. Anybody

who likes to use it for a commercial purpose should obtain the permission of the author.
Arrangements can probably be worked out. Note that distributing this software bundled
in with any product is considered to be a commercial purpose.

THE SOFTWARE IS PROVIDED “AS-IS” AND WITHOUT WARRANTY OF

ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT

LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR

A PARTICULAR PURPOSE.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL,

INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,

OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OR USE, DATA

OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAM-

AGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CON-

NECTION WITH THE USE OR PERFORMANCE THIS SOFTWARE.

2

Contents

1 Introduction 1

1.1 What is Support Vector Machine . 1
1.2 Support Vector Machine . 1

2 How to use HeroSVM 3

2.1 Design philosophy of HeroSVM . 3
2.2 Components . 3
2.3 Basic data structures . 3

2.3.1 Kernel . 3
2.3.2 The size of working set . 4
2.3.3 Training data format . 4
2.3.4 Summary information . 5
2.3.5 Save training results . 5

2.4 Thread issues . 6

3 Function Reference 7

3.1 SvmInit . 7
3.2 SvmTrain Parallel . 9
3.3 SvmTrain Sequential . 10
3.4 SvmClean . 11

4 Appendix 13

3

4 CONTENTS

Chapter 1

Introduction

1.1 What is Support Vector Machine

1.2 Support Vector Machine

Support vector machines (SVM) have recently generated a great interest in the community
of machine learning due to its excellent generalization performance in a wide variety of
learning problems, such as handwritten digit recognition (see [1] [2]), classification of web
pages [3] and face detection [4]. Some classical problems such as multi-local minima, curse
of dimensionality and overfitting in neural networks [5], seldom occur in support vector
machines. However, training support vector machines is still a bottleneck, especially for
a large-scale learning problem [2]. Therefore, it is important to develop a fast training
algorithm for SVM in order to apply it to various engineering problems in other fields.
HeroSVM package has been implemented based on our proposed method [6] [7].

In order to simplify the description of implementation, we give a simple introduction
of support vector machine. The details are referred to Burge’s tutorial [8]. Given that
training samples {xi, yi}, i = 1, · · · , N , yi ∈ {−1, 1}, xi ∈ Rn where yi is the class label,
support vector machine first maps the data to the other Hilbert space H (also called
feature space), using a mapping Φ,

Φ : Rn → H. (1.1)

The mapping Φ is implemented by a kernel function K that satisfies Mercer’s conditions [9]
such that k(xi, xj) = Φ(xi)·Φ(xj). Then, in the high-dimensional feature space H, we find
an optimal hyperplane by maximizing the margin and bounding the number of training
errors. The decision function can be given by

f(x) = θ(w · Φ(x) − b)

= θ(
N

∑

i=1

yiαiΦ(xi) · Φ(x) − b) (1.2)

1

2 CHAPTER 1. INTRODUCTION

= θ(
N

∑

i=1

yiαik(xi, x) − b).

where

θ(u) =

{

1 if u > 0
−1 otherwise

(1.3)

If αi is nonzero, the corresponding data xi is called support vector. Training a SVM is to
find αi, i = 1, · · · , N , which can be achieved by minimizing the following quadratic cost
function:

maximize LD(α) =
∑N

i=1
αi −

1

2

∑N
i=1

∑N
j=1

αiαjyiyjk(xi, xj).

subject to 0 ≤ αi ≤ C i = 1 · · ·N (1.4)
∑N

i=1
αiyi = 0

where C is a parameter chosen by the user, a larger C corresponds to a higher penalty
allocated to the training errors. Since kernel K is semi-positive definite and constraints
define a convex set, the above optimization reduces to a convex quadratic programming.
The weight W is uniquely determined, but with respect to the threshold b, there exist
several solutions in the special cases (see [10] [11] [12]). Further, an interesting fact is
that the solution is not changed if any non-support vector is removed from Eq.(1.4).

In the next chapter, we describe basic data structures and show users how to use the
package. The function reference is given in the chapter 3.

Chapter 2

How to use HeroSVM

2.1 Design philosophy of HeroSVM

HeroSVM was implemented based on our proposed methods [6][7]. In order to facilitate
the software portability and maintainess, an object-oriented method has been applied
to design the package. Error handling was implemented for the robustness of software.
HeroSVM is written using C++ language and developed under Microsoft visual C++ 6.0.
In the current version, a dynamical link library in Windows or a shared library in Linux
is provided to train SVM on a large-scale learning problem efficiently for research purpose
in PC platform. We expect that HeroSVM can facilitate the training of support vector
machine and solve some real-world problems in various engineering fields.

2.2 Components

The proposed SVM training algorithm consists of two components: parallel optimization
and sequential optimization. Parallel optimization can be used to remove most non-
support vectors quickly so that the computational cost for sequential optimization can be
dramatically reduced. Sequential optimization is a working set algorithm, where several
strategies such as kernel caching, shrinking are effectively integrated into it to speed up
training.

2.3 Basic data structures

2.3.1 Kernel

In HeroSVM, some classical kernels such as radial basis function (RBF), polynomial and
linear kernels have been implemented. Users can choose the above kernels or use their
own customized kernel. Let a, b, c are kernel parameters. Then three classical kernels can

3

4 CHAPTER 2. HOW TO USE HEROSVM

be written as

RBF exp(−‖x1−x2‖2

2c
) (2.1)

Polynomial ((< x1, x2 > +b)/c)a (2.2)

Linear (< x1, x2 > +b)/c (2.3)

where x1 ∈ Rn and x2 ∈ Rn, a is a positive integer, < · > and ‖ · ‖ denote dot product
and Euclidean norm, respectively.

2.3.2 The size of working set

Usually the total training set is much larger than the number of final support vectors. The
size of the working set should be large enough to contain these support vectors. Before the
training, the number of support vectors is unknown. Therefore, users can estimate it in
terms of the number of training samples. Experiments [6] have shown that generalization
performance is insensitive to this paper if it is large enough.

2.3.3 Training data format

Parallel optimization needs two files. One sequentially stores the feature vectors of all
training samples, which are shared by all classes. The other stores corresponding labels
of training samples. A sample is labeled by an integer1 in an interval from 0 to m − 1,
where m is the number of classes. After parallel optimization, training sets for each class
are collected. Two files for each class will be generated. One is called feature vector file.
The other is called target file, which sequentially stores target values (-1.0 or 1.0). The
training method is one-against-the-rest. Note that feature vectors are stored in binary
format and each component is represented as a 4-byte float data type. For example,

/* feature vector file */

Input feature vector of sample 1

Input feature vector of sample 2

...

Input feature vector of sample n

/* label file */

Label of sample 1

Label of sample 2

...

Label of sample n

1This integer is called class label of a sample.

2.3. BASIC DATA STRUCTURES 5

2.3.4 Summary information

After training for each class ends, the summary information will be stored in a file . We
describe its format with an example as follows:

class Label = 0

User-specified kernel is used

The size of working set is 2000

The size of the training set is 7291

b_low = 0.528602 b_up = 0.507482

cache_hit = 6219030

total kernel evaluations = 8928917

Actual kernel evaluations = 2709887

cache hit ratio = 0.696504

C= 10.0000

Bias = 0.518042

Iterations = 91

Training time (CPU seconds): 13.390000

Max alpha = 4.608595

Number of support vectors : 330

Number of bounded support vector: 0

|W|^2 = 159.62

margin of separation = 0.158301

In the above example, Bias means b in Eq.(1.2). The cache hit ratio can be calculated by

cache hit ration =
cache hit

total kernel evaluations
(2.4)

b low and b up are two thresholds in modified SMO [11], and margin is equal to 1/ ‖ w ‖2.
If alpha value of one support vector is equal to C, we call it bounded support vector.

2.3.5 Save training results

We save training results into two files. One is used to store kernel paramters, support
vectors and the corresponding α. The other (index file) is to store the sequential number
of support vectors on the training set in order to merge them during the testing stage and
reduce unnecessary kernel re-evaluations. Users can read training results with C language
as follows:

fp = fopen(file name, ‘‘rb’’);

fread(&C, sizeof(float), 1, fp);

//for user-specified kernel, skip the following three statements.

fread(&kernel_para1, sizeof(float), 1, fp);

6 CHAPTER 2. HOW TO USE HEROSVM

fread(&kernel_para2, sizeof(float), 1, fp);

fread(&kernel_para3, sizeof(float), 1, fp);

fread(&threshold, sizeof(float), 1, fp);

fread(&sv, sizeof(int), 1, fp);

for (i = 0; i < sv; i++, vec += dim)

{

//read the support vector

fread(vec, sizeof(float), dim, fp);

//read the target value of the above support vector

fread(&target[i], sizeof(float), 1, fp);

fread(&alpha[i], sizeof(float), 1, fp);

}

The format of the index file is illustrated by

sequential number of support vector 1

sequential number of support vector 2

...

sequential number of support vector n

2.4 Thread issues

Although a single thread is considered, parallel optimization of the proposed algorithm
is suitable for multi-thread programming in a multi-processor platform. In the next
version, multi-thread programming will be supported to speed up the training on a multi-
processor’s platform.

Chapter 3

Function Reference

This chapter describes the interface function reference. These functions are sorted by
name. For each routine, we refer to format of xlib reference manual, including declarations
of the arguments, return type and description.

3.1 SvmInit

Name

SvmInit – Set SVM training parameters and allocate the memory.

Header file

SVMTrain.h

Synopsis

int SvmInit(int nDim,
int nWorkingSetSize ,
int nTrainingSetSize ,
float kernel_Para1,
float kernel_Para2,
float kernel_Para3,
unsigned short int nKernelType,
int ClassNum,
float C,
int TrainingType,
int nApplicationType);

Parameters

7

8 CHAPTER 3. FUNCTION REFERENCE

nDim
The parameter specifies the dimension of input feature vector.

nWorkingSetSize
Size of working set

nTrainingSetSize
Number of training samples

kernel Para1
Kernel parameter

kernel Para2
Kernel parameter

kernel Para3
Kernel parameter

nKernelType
Kernel type. There are four categories as follows:
1 RBF kernel
2 Polynomial kernel
3 Linear kernel

ClassNum
Number of classes

C
Upper bound of alpha in eq. (1.4).

TrainingType
Specify the optimization step
0 Parallel optimization
1 Sequential optimization

nApplicationType
Application type for the output of error message
0 Console application
1 Window application

Return Value

If succeed, return 0; otherwise -1

Remarks

See Also

3.2. SVMTRAIN PARALLEL 9

SvmClean

Example

/* create a SVM with RBF kernel for parallel optimization*/
SvmInit(576, 8000, 60000, 1.0, 0.0, 0.3, 1, 10, 10.0, 0, 0);

3.2 SvmTrain Parallel

Name

SvmTrain Parallel – Train support vector machines with multi-classes to remove
non-support vectors quickly.

Header file

SVMTrain.h

Synopsis

int SvmTrain_Parallel(char* szDataFilePathName, char* szLabelFilePathName,

char* PositiveSamplesFilePathName, char* SaveFilePath);

Parameters

szDataFilePathName
a pointer to feature vector filename

szLabelFilePathName
a pointer to labelling filename. This file consists of identity numbers of samples.

PositiveSamplesFilePathName
a pointer to positive sample file name. This file contains one sample of each
class.

SaveFilePath
Saved file path.

Return Value

If succeed, return 0; otherwise -1

Remarks

Feature vector and label files are both read/written in binary mode.

See Also

10 CHAPTER 3. FUNCTION REFERENCE

Example

SvmTrain_Parallel(‘‘d:\\data\\feature.dat’’, ‘‘d:\\data\\label.dat’’,

‘‘d:\\data\\pos_samples.dat’’, ‘‘d:\\data\\");

3.3 SvmTrain Sequential

Name

SvmTrain Sequential – Train support vector machines sequentially

Header file

SVMTrain.h

Synopsis

int SvmTrain_Sequential(char* szDataFilePathName, char* szTargetFilePathName,

int nClassID, char* szSummaryFilePathName, char* szSvFilePathName,

char* szSvIndexFilePathName);

Parameters

szDataFilePathName
a pointer to feature vector filename

szTargetFilePathName
a pointer to target filename. This file consists of target values of samples (-1.0
or 1.0).

nClassID
Identity number of one class

szSummaryFilePathName
a pointer to summary filename

szSvFilePathName
a pointer to a filename. This file stores support vectors and trained parameters.

szSvIndexFilePathName
a pointer to index filename

Return Value

If succeed, return 0; otherwise -1

3.4. SVMCLEAN 11

Remarks

Feature vector and target files are both read/written in binary mode.

See Also

Example

3.4 SvmClean

Name

SvmClean – Free dynamically allocated memory in terms of training type.

Header file

SVMTrain.h

Synopsis

void SvmClean(int TrainingType);

Parameters

TrainingType
0: Parallel optimization
1: Sequential optimization

Return Value

NONE

Remarks

See Also

SvmInit

Example

SvmClean(0);

12 CHAPTER 3. FUNCTION REFERENCE

Chapter 4

Appendix

The chapter contains contact information and an example that shows how to use HeroSvm.

Jianxiong Dong, Ph.D.
Centre of Pattern Recognition and Machine Intelligence
1455 de Maisonneuve Blvd. West Suite EV003.403
Montreal, Quebec H3G 1M8
Canada

E-mail: jdongca2003@gmail.com
homepage: http://www.cenparmi.concordia.ca/˜jdong

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "global.h"

#include "SVMTrain.h"

extern void GeneratePositiveSamples();

extern void MergeOrderIndex();

extern void GenerateMergeSet();

extern void GenerateFinalSvIndex();

extern void CreateSvmTrainingDictionary();

extern void LoadSv();

extern void SvmTest();

//Step 1

int TestParallelOptimization()

{

int nRes;

13

14 CHAPTER 4. APPENDIX

nRes = SvmInit(DIM, 8000, TotalSamplesNumber,

(float)1.0, (float)0.0, (float)0.3,

1, nClass, 10.0, 0, 0);

if (nRes)

{

printf("\n Intialization fails");

return -1;

}

char dataFileName[256];

char labelFileName[256];

char posSampleFileName[256];

strcpy(dataFileName, FilePath);

strcat(dataFileName, "feature.dat");

strcpy(labelFileName, FilePath);

strcat(labelFileName, "label.dat");

strcpy(posSampleFileName, FilePath);

strcat(posSampleFileName, "pos_samples.dat");

nRes = SvmTrain_Parallel(dataFileName,

labelFileName,

posSampleFileName,

FilePath);

if (nRes)

{

printf("\n Training fails");

return -1;

}

SvmClean(0);

return 0;

}

//step 2:

int TestSequentialOptimization()

{

char fname1[200];

char fname2[200];

char buf[200];

char fname3[200];

char fname4[200];

15

int classNum = nClass;

int i;

int nRes;

char fname[256];

int SvOfClass[nClass];

FILE* fp;

strcpy(fname, FilePath);

strcat(fname, "SvNum.dat");

fp = fopen(fname, "rb");

fread(SvOfClass, sizeof(int), nClass, fp);

fclose(fp);

int SizeOfWorkingSet;

for (i = 0; i < nClass; i++)

{

printf("\n Class = %d\n", i);

SizeOfWorkingSet = SvOfClass[i];

nRes = SvmInit(DIM, SizeOfWorkingSet, SvOfClass[i],

(float)1.0, (float)0.0, (float)0.3,

1, nClass, 10.0, 1, 0);

if (nRes)

{

printf("\n Intialization fails");

return -1;

}

itoa(i, fname1, 10);

strcpy(buf, FilePath);

strcpy(fname4, buf);

strcat(fname4, fname1);

strcat(fname4, ".dat");

strcat(fname1, ".tgt");

strcat(buf, fname1);

itoa(i, fname2, 10);

strcpy(fname3, fname2);

strcat(fname3, ".index");

strcat(fname2, "_res.dat");

16 CHAPTER 4. APPENDIX

strcpy(fname, FilePath);

strcat(fname, "info2.txt");

nRes = SvmTrain_Sequential(fname4, buf, i,

fname, fname2, fname3);

if (nRes)

{

printf("\n SVM training fails");

SvmClean(1);

return -1;

}

SvmClean(1);

}

return 0;

}

int main()

{

printf("\n 1. Collect positive samples");

printf("\n 2. Parallel optimization");

printf("\n 3. Merge index");

printf("\n 4. Generate training sets for sequential optimization");

printf("\n 5. Sequential optimization");

printf("\n 6. Create recognition dictionary for svm");

printf("\n 7. Svm Testing\n");

printf("\n Please activate the specified step: ");

int step;

scanf("%d", &step);

switch(step)

{

case 1:

GeneratePositiveSamples();

break;

case 2:

TestParallelOptimization();

break;

case 3:

MergeOrderIndex();

break;

17

case 4:

GenerateMergeSet();

break;

case 5:

TestSequentialOptimization();

break;

case 6:

GenerateFinalSvIndex();

CreateSvmTrainingDictionary();

break;

case 7:

LoadSv();

SvmTest();

break;

}

return 0;

}

18 CHAPTER 4. APPENDIX

Bibliography

[1] B.Scholkopf, C.J.C. Burges, and V. Vapnik, “Extracting support data for a given task,” in
Proceedings, First International Conference on Knowledge Discovery and Data Mining, U.M.
Fayyad and R. Uthurusamy, Eds., pp. 252–257, AAAI Press, Menlo Park, CA, 1995.

[2] D. DeCoste and B. Scholkopf, “Training invariant support vector machines,” Machine Learning,
vol. 46, no. 1–3, pp. 161–190, 2002.

[3] T. Joachims, “Text categorization with support vector machine,” in Proceedings of European
Conference on Machine Learning(ECML), 1998.

[4] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines: An application to face
detection,” in Proceedings of the 1997 conference on Computer Vision and Pattern Recogni-
tion(CVPR’97), Puerto Rico, June 17–19, 1997.

[5] C.M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.

[6] Jian-xiong Dong, Krzyzak A., and Suen C.Y., A fast SVM Training Algorithm. Proceedings of
International workshop on Pattern Recognition with Support Vector Machines. S.-W. Lee and
A. Verri (Eds.) Springer Lecture Notes in Computer Science LNCS 2388, pp. 53–67, Niagara
Falls, Canada, August 10, 2002.

[7] Jian-xiong Dong, Krzyzak A., and Suen C.Y., Fast SVM Training Algorithm with Decomposi-
tion on Very Large Datasets, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 27, no. 4, pp. 603–618, April 2005.

[8] C.J.C. Burges, “A tutorial on support vector machines for pattern recognition,” in Data Mining
and Knowledge Discovery, pp. 121–167, 1998.

[9] J. Mercer, “Functions of positive and negative type and their connection with the theory of
integral equations,” Philos. Trans. Roy. Soc. London, vol. A(209), pp. 415–446, 1909.

[10] C.J.C. Burges and D.J. Crisp, “Uniqueness of the SVM solution,” in Advances in Neural Infor-
mation Processing Systems, to appear in NIPS 12.

[11] S.S. Keerthi, S.K. Shevade, C. Bhattachayya, and K.R.K. Murth, “Improvements to Platt’s
SMO Algorithm for SVM classifier design,” Neural Computation, vol. 13, pp. 637–649, March,
2001

[12] Lin Chih-Jen, “ Formulations of support vector machines: A note from an optimization point
of view,” Neural Computation, vol. 13, pp. 307–317, 2001.

19

