Policy-Based Language for Autonomous and Adaptive Security

Frédéric Cuppens
Professor, Télécom Bretagne
Activity at Télécom Bretagne

- Professor in the LUSSI department
 - Training of graduate engineer students in Telecommunications with specialization in computer security
 - In-service training in cyber security track “Security administrator”.

- Responsible for the CNRS Team SFIIS
 - Security, reliability and integrity of information and systems
 - Joint team with Télécom Bretagne, UVO and ENSTA Bretagne
 - 12 professors
 - 1 CNRS researcher
 - 5 research associates
 - 20 PhD students
Activity at Télécom Bretagne

- Professor in the LUSSI department
 - Training of graduate engineer students in Telecommunications with specialization in computer security
 - In-service training in cyber security track “Security administrator”

- Responsible for the CNRS Team SFIIS
 - Security, reliability and integrity of information and systems
 - Joint team with Télécom Bretagne, UBO and ENSTA Bretagne
 - 12 professors
 - 1 CNRS researcher
 - 5 research associates
 - 20 PhD students
Activity at Institut Mines-Télécom

- Leader of the Thematic Network on Security of Digital Services and Systems
 - Cluster of competency
 - Telecom Paristech, Telecom SudParis, Telecom Bretagne
 - Mines ParisTech, Mines de Nancy, Mines de Nantes, Mines de Saint-Etienne
 - Eurecom
 - 52 permanent staff
 - Largest and strongest research group in Computer Security in France
 - Strengthen collaboration through joint project and research lab with industrial partners
On going collaborative projects

- European projects (FP7)
 - Intertrust: Trusted Interoperable Infrastructure
 - Demons: Decentralized, cooperative and privacy-preserving monitoring

- European projects (ITEA)
 - Predykot: Policy REfined DYnamically and Kept On Track
 - Adax: Intrusion Detection and counter-measure simulation

- National projects (ANR)
 - Pairse: Preservation of confidentiality in Web services environments:

- National projects (FUI and PIA)
 - Frag&Tag: Fragmentation and watermarking of sensitive databases
 - Austral: Security policy for distribution of TV on open network over the top
 - MO3T: Cloud infrastructure for open and interoperable digital library
 - ISER: Secure interoperability for multi-source intelligence systems
Joint labs with industrial partners

- **Cyber Security Lab**
 - With Airbus Group / Cassidian

- **Secure Compression Lab**
 - With Secure IC and DOREMI

- IDentity & Security Alliance Lab (TPT)
 - With SAFRAN / MORPHO

- SEIDO Lab (TPT)
 - With EDF R&D
 - Security of Internet of Things in Electric Plants

- On going negotiation with Thales
Research project

- Policy-Based Language for Autonomous and Adaptive Security
 - Concept of autonomous and adaptive security
 - Policy-Based language for adaptive security
 - Autonomous policy deployment
 - Policy interoperability and negotiation
Concept of Autonomous and Adaptive Security
Concept of Autonomous and Adaptive Security

« Classical » Security

- Security policy specification
- Deployment
- Configuration
- Intrusion detection
- Response

Autonomic Security

- Security policy interoperability
- Self deployment
- Self configuration
- Self evaluation (Risk, Impact)
- Autonomic response
A typical infrastructure to operate security policies …
The policy is administered and enforced -downwards- ...
The result is measured and reported upwards...
Enforcement and reporting are independent and un-correlated.
Objective of adaptive security management
Closing the loop of security policy
Key issues

- Contextual policy-based language
- Self evaluation of risk and impact
- Self deployment and configuration
- Autonomous negotiation of policy and trust
Policy-Based language for adaptive security
Modeling contextual security policies
The OrBAC model

- Organization based access control

[Diagram showing OrBAC model with nodes labeled as follows:
- Context
- Organization: Hospital
- Doctor
- Consult
- Med_record
- Role
- Activity
- View
- Subject
- Action
- Object
- Bob
- read
- Mary_record
- Attending Physician]
Modeling contexts

- Key component of policy adaptation
 - Policy changes when new contexts are activated
 - Activation of new security rules

- Adaptation to the user’s behavior
 - Location based context
 - Provisional context

- Adaptation to the system environment
 - Temporal context
 - Emergency context

- Adaptation to risk evolution
 - Threat based context
Context based language

- State based context
 - Logical rule: \(\text{Hold(Org,S, A, O, Ctx)} : - f1, \dots, fn \)
 - Example:
 \(\text{Hold(Hosp,S,_,_, in operating room)} : - \text{Location(S, L), Type(L, operating_room)} \)

- Event based context
 - \(\text{Start(Ctx)}: \) moment at which Ctx begins to hold
 - \(\text{End(Ctx)}: \) moment at which Ctx stops to hold

- Context based language
 - \(\text{CE}_S: \) set of state context expression
 - \(\text{CE}_E: \) set of event context expression

- \(\text{CE}_S ::= \text{Always} | \text{Never} | C_S | \text{CE}_S \& \text{CE}_S | \text{CE}_S \oplus \text{CE}_S | - \text{CE}_S | [\text{CE}, \text{CE}] \)
- \(\text{CE}_E ::= \text{start(CE}_S) | \text{end(CE}_S) | \text{CE}_S \& \text{CE}_E | \text{CE}_E \& \text{CE}_S \)
- \(\text{CE} ::= \text{CE}_S | \text{CE}_E \)
Modeling contextual security policies
Part 1: Access control

- Permission and Prohibition

- Examples
 - Prohibition(Hosp, Nurse, Consult, Med_record, Always)
 - Permission(Hosp, Nurse, Consult, Med_record, Emergency)

- Key issues and contribution
 - Detection of anomalies
 - Shadowing, Redundancy
 - Detection and management of conflicts
 - Derivation of a policy free of conflict
 - Consistent management of exceptions
 - Administration and delegation
 - AdOrBAC
 - Detection of anomaly in a delegation chain

Table Example

<table>
<thead>
<tr>
<th>Type</th>
<th>Derives from</th>
<th>Subject</th>
<th>Action</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>permission</td>
<td>perm1</td>
<td>Gerard</td>
<td>configure serv1</td>
<td>computer2</td>
</tr>
<tr>
<td>prohibition</td>
<td>prohib1</td>
<td>Gerard</td>
<td>edit www config</td>
<td>computer1</td>
</tr>
<tr>
<td>prohibition</td>
<td>prohib2</td>
<td>Gerard</td>
<td>edit www config</td>
<td>computer1</td>
</tr>
</tbody>
</table>

AdOrBAC

- Detection of anomaly in a delegation chain

MotOrBAC

- Lab-STICC
Modeling contextual security policies
Part 2: Usage control

- Obligation and dispense
- Examples
 - Obligation(Hosp, Nurse, Write, Med_report, Emergency_consult, Delay(3days))
 - Obligation(Hosp, Nurse, Check_up, Patients,
 Start(Working_hours), End(clinic_hours), groupContext(∀o∃a∃s))
- Key issues and contribution
 - Reference monitor for usage control
 - Based on Event-Condition-Action rules specification
 - Proof of determinism and termination of the decision
 - Conflict in obligations with deadline
 - Situation calculus for planning obligations with deadline
 - Collective obligations
 - Delegation of obligations
 - Formal model for responsibility, liability and accountability
Response Policy

Step 1: Threat pre-characterization

OrBAC security rules by use cases and referenced alerts
Step 2: Threat characterization

- **Context of applicable response**
- **Rules**
- **OrBAC**
- **Information Matcher**
- **Alert**
- **Context parameters**

Organization rules of applicable response
Response Policy

Step 3: Policy Instantiation

Context of applicable response

Rules
OrBAC

Information Matcher

Context parameters

MotOrBAC

Organization rules of applicable response

Policy instances

Alert

Lab-STICC
Response policy

- Impact evaluation
 - Taxonomy of countermeasures based on their effect on the system and on the attack
 - Model of attack likelihood based on attack graphs
 - Model of response parameterized by the intruder’s level of skill and knowledge

- Analysis of dependencies
 - Service Dependency Framework Model in AADL (Architecture Analysis and Design Language)
 - Management of alternative response
 - Management of logical and physical dependencies in policy based response
Autonomous policy deployment
Security policy deployment and configuration

- Problem

Global policy

- Self policy deployment and configuration
 - Network
 - Operating system
 - Database
 - Service
Security policy deployment and configuration

- Different approaches
 - Pushing configuration
 - Network, Operating systems and web services
 - Rewriting queries
 - Database management systems
 - Weaving security aspects
 - Trusted service interoperability
 - Security and privacy by design
Some contributions

- Global OrBAC policy
- Pushing network configuration
- XACML Translation
- Query rewriting
- Secure Service Interoperability
- Access control To web services
- fQuery
fQuery
Secure rewriting of SPARQL queries
"Instrumentation" with OrBAC

Simple example

```
SELECT ?name ?age
WHERE{
  FILTER EXISTS{
    ?doc rdf:type O:Doctor.
    ?doc O:hasId ?id.
    FILTER(?id=$bob_id)
  }
}
```

Permission(Hospital, Doctor, Read, Med_record, Attending_Phasician)
Hold(Hospital, s, a, o, Attending_Phaician) \(\Leftarrow\)
patient_data(o,p) \& doctor(s,p)
Privacy preferences

<table>
<thead>
<tr>
<th>Data Owner</th>
<th>Field</th>
<th>Consent</th>
<th>Accuracy</th>
<th>Purpose</th>
<th>Recipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safaa</td>
<td>Age</td>
<td>Yes</td>
<td>K_anonym, k=5</td>
<td>Medical_treatment</td>
<td>Bob</td>
</tr>
<tr>
<td>Safaa</td>
<td>Name</td>
<td>Yes</td>
<td>-</td>
<td>Medical_treatment</td>
<td>Bob</td>
</tr>
</tbody>
</table>

![Diagram of privacy preferences](image-url)
Rewriting a query by joining each field with its preference, then we apply the accuracy

```
1. SELECT ?name ?age
2. FROM dt:infos WHERE {
3.   ?p rdf:type dt:Patient;
4.   dt:id ?id;
5.   dt:name ?n;
7. }
8. SERVICE ps:preferences {
9.   ?dp rdf:type P:DataOwner;
10.   P:hasId ?id;
12.   ?pref P:hasPurpose ‘Medical_treatment’;
13.   P:hasRecipient ‘Bob’;
15.   ?tp1 P:hasName `name’;
16.   P:hasDecision ?nameDecision.
17.   OPTIONAL{ ?tp1 P:hasAccuracy ?nameAccuracy.}
18.   ?tp2 P:hasAge `age’;
19.   P:hasDecision ?ageDecision.
20.   OPTIONAL{ ?tp2 P:hasAccuracy ?ageAccuracy.}
21. }
22. BIND(IF(?nameDecision=’No’,null,
23.     IF(bound(?nameAccuracy),
24.       udf:eval(?n,?nameAccuracy),?n)
25.     ) AS ?name).
26. BIND(IF(?ageDecision=’No’,null,
27.     IF(bound(?ageAccuracy),
28.       udf:eval(?a,?ageAccuracy),?a)
29.     ) AS ?age).
30. FILTER(?age >= 25)
31. }
```
Application to AGGREGO: Security & privacy in Semantic Mediator
Application to AGGREGO: Security & privacy in Semantic Mediator

Business Applications

Smart-Query Component

fQuery-AC (SPARQL 1.0)

fQuery-Privacy (SPARQL 1.1)

SPARQL Engine (SPARQL 1.1)

AGGREGO Server

Q_0

Q_1

Q_2

Q_{data}

Q_{pref}

Access Control Rules

MotOrBAC

Security Policy

PrivOrBAC SPARQL Service

29/04/13
Policy interoperability and negotiation
Policy interoperability

- Problematic
 - Distributed systems managed by different organizations
 - Need to share and exchange information

- Each organization has its own security policy
O2O: Organization to Organization

- Virtual private organization B2A
 - Control interoperability from B to A
 - Resources are owned by A (Ograntor)
 - Subjects come from B (Ograntee)
O2O: Organization to Organization

- VPO and Principle of Confinement
 - The scope of a security rule should be limited to the organization it applies to
 - O2O enforces the principle of confinement

- Policy of interoperability
 - Based on contract definition
 - Policy compatibility based on ontology alignment

- Model of VPO administration
 - Centralized administration
 - Decentralized administration
 - Hybrid administration
Trust Negotiation with XeNA

Service requester

- Policy evaluation
- Exception treatment module
- Exception treatment policies
- Access policies

Service provider

- Policy evaluation
- Exception treatment module
- Exception treatment policies
- Access policies

Negotiation module

Request

Negotiation

Response
XeNA

- Resource classification based negotiation
 - Classification of resources
 - Class 1 – with direct access (no negotiation)
 - Class 2 – with indirect access (negotiation based on internal security rules)
 - Class 3 – with indirect strategic access (negotiation based on obfuscated security rules)
 - Negotiation policies through derivation process
 - Negotiation and obfuscation strategies
 - Exceptions and treatment strategies

- Policy rewriting
 - Definition of an algebra
 - Rewriting based algorithm to detect and solve conflicts
 - Approach to derive negative attributes from positive attributes

- Implementation of the XeNA framework
 - Partially based on TrustBuilder
 - OrBAC profile of XACML
On-going work and conclusion
On-going work and conclusion

- **Policy mining**
 - Mining firewall configuration to extract a global policy
 - Autonomous process to compare configurations

- **Policy negotiation**
 - Autonomous negotiation to derive interoperability policies
 - Integration to Secure SLA

- **Response policy to coordinated attacks**
 - Appropriate measures to evaluate risk and impact
 - Strategies to derive consistent responses

- **Application to SCADA systems**
 - Adaptive configuration for industrial automata
 - Response policies in case of intrusion