

The reliability and precision of OsiriX[®] imaging software in the assessment of psoas muscle surface area from computed tomography scans in advanced cancer patients Stefanie Fallone*^{1,4}, Noor Mady*^{2,3,4}, Robert D. Kilgour^{1,4}, Leonard Rosenthall⁵, Sarah Khan⁴, Antonio Vigano⁴ ¹Department of Exercise Science; ²Department of Psychology; ³Science College, ⁴McGill Nutrition and Performance Laboratory, McGill University Health Centre; ⁵Department of Radiology, McGill University. *Both authors contributed equally to this study.

Introduction

- Assessment of skeletal muscle using computed tomography (CT) is important in determining sarcopenia and cachexia in advanced cancer¹.
- Medical imaging software programs such as OsiriX are available to quantify paraspinal skeletal muscle from CT scans^{2,3}.

Aim

- To determine the reliability and precision of OsiriX medical software in assessing the cross-sectional surface area of the psoas muscle at the 4th lumbar vertebra (L4).
- It is hypothesized that there are no significant intra- \bullet and inter-rater reliability differences for measurements of the surface area of the psoas muscle at L4 over time and among the top, middle and bottom scan measures.

Methods

- Psoas muscle cross sectional area was measured using OsiriX software from CT scans obtained from 19 advanced cancer patients.
- Reliability measurements were done over time (t=0, 24 hrs, 2 wks) and over three regions of L4 (top, mid, bottom) by two separate raters (SF & NM).

2067171V(65y lliopsoa erior Vena Cava Quadratus Lumborum 25.799 Sum: 86469 Sacrospinalis Iliocostalis Longissimus Area: 11.813 cm2 45,573 SDev: 24,368 Sum: 8039 Zoom: 134% Angle: 358 m:1/2 2007-02-13, 12:33:58 PM Jncompressed Thickness: 3.75 mm Location: -212.00 mm Results Table 1. Inter-rater differences in psoas cross-sectional area measurements Pearson correlations Measurement time intervals between Rater 1 and 2 0.990 t=0 hours t=24 hours 0.983 0.987 t=2 weeks Table 2. %CV and SDcm² comparisons between raters at the different L4 levels L4 level Rater 1 Rater 2 Rater 1 Rate %CV %CV P-value* SDcm² SDo 3.750 Тор 4.244 0.518 0.723 0.60 Middle 3.385 3.030 0.753 0.586 0.53 0.794 4.201 0.996 Bottom 4.199 0.79 *Paired t-test; %CV is the coefficient of variation; SDcm² is the standard deviation. Table 3. Multiple analyses for each regression line (Rater 1 vs Rater 2) RMSE Correlation L4 regions

0.772 0.992 Тор 0.777 0.993 Middle Bottom 0.870 0.992

RMSE=root mean squared error Limits of Predictability= 1.96 x RMSE or the dispersion of points above and below the line of regression

• Inter-rater correlations demonstrated a high reliability over time and at each of the three levels of L4. • No differences in the level of precision (%CV and SDcm²)

- between raters.
- psoas muscle surface area in axial CT scans.
- such as sarcopenia and cachexia using CT.

¹Baracos V, Kazemi-Bajestani S. Clinical outcomes related to muscle mass in humans with cancer and catabolic illnesses. International Journal of Biochemistry & Cell Biology [serial online].October 2013; 45(10):2302-2308. Available from: Academic Search Complete, Ipswich, MA. Accessed August 17, 2014.

² Rosset, A., Spadola, L., and Ratib, O. (2004). OsiriX: An Open-Source Software for Navigating in Multidimensional DICOM Images. Journal of Digital Imaging, 17(3), 205-216. ³ Fortin, M., and Battie, M. C. (2012). Quantitative Paraspinal Muscle Measurements: Inter-Software Reliability and Agreement Using OsiriX and ImageJ. Phys. Ther, 92, 853-864.

er 2	
cm²	P-value*
06	0.337
32	0.577
90	0.974

Limits of Predictability	
±1.514	
±1.522	
±1.711	

• OsiriX medical imaging software is shown to be reliable and precise and can be used by multiple raters to assess

• Future studies can take advantage of OsiriX technology to determine the presence of muscle wasting conditions

References