DEPARTMENT OF MECHANICAL AND INDUSTRIAL ENGINEERING

Section 71.40

Faculty

Chair

MARTIN D. PUGH, PhD University of Leeds, PEng; Professor, Provost's Distinction

Associate Chair

LYES KADEM, PhD Université d'Aix-Marseille II/Université Laval, ing.

Professors

A.K. WAIZUDDIN AHMED, PhD Concordia University, PEng; Provost's Distinction RAMA B. BHAT, PhD Indian Institute of Technology, Madras, ing.; Provost's Distinction NADIA BHUIYAN, PhD McGill University, ing.

AKIF ASIL BULGAK, PhD University of Wisconsin-Madison, PEng

MING YUAN CHEN, PhD University of Manitoba, APEGS

ZEZHONG CHEN, PhD University of Victoria, PEng

JAVAD DARGAHI, PhD Caledonian University (U.K.), PEng

KUDRET DEMIRLI, PhD University of Toronto, PEng

ALI DOLATABADI, PhD University of Toronto, PEng; Provost's Distinction

ROBIN A.L. DREW, PhD University of Newcastle upon Tyne, ing.; Provost's Distinction

M. NABIL ESMAIL, PhD Moscow State University, ing.; Provost's Distinction

RAJAMOHAN GANESAN, PhD Indian Institute of Science, PEng

WAHID S. GHALY, PhD Massachusetts Institute of Technology, ing.

GERARD J. GOUW, PhD Queen's University, ing.

IBRAHIM G. HASSAN, PhD University of Manitoba, PEng

SUONG VAN HOA, PhD University of Toronto, ing.; Provost's Distinction

MAMOUN MEDRAJ, PhD McGill University, PEng

CHRISTIAN MOREAU, PhD Université Laval

MUTHUKUMARAN PACKIRISAMY, PhD Concordia University, PEng; Provost's Distinction

MARIUS PARASCHIVOIU, PhD Massachusetts Institute of Technology, ing.; Provost's Distinction

SUBHASH RAKHEJA, PhD Concordia University; Provost's Distinction

RAMIN SEDAGHATI, PhD University of Victoria, PEng; Provost's Distinction

ION STIHARU, PhD Polytechnic Institute of Bucharest, PEng; Provost's Distinction

CHUN-YI SU, PhD South China University of Technology

GEORGIOS H. VATISTAS, PhD Concordia University; Provost's Distinction

WENFANG XIE, PhD Hong Kong Polytechnic University, PEng

PAULA WOOD-ADAMS, PhD McGill University

YOUMIN ZHANG, PhD Northwestern Polytechnical University

Distinguished Professors Emeriti

RICHARD M.H. CHENG, PhD University of Birmingham

SUI LIN, Dring University of Karlsruhe

HUGH J. MCQUEEN, PhD University of Notre Dame

MOHAMED O.M. OSMAN, DrScTech, Swiss Federal Institute of Technology

Professor Emeritus

VOJISLAV N. LATINOVIC, DEng Concordia University

Associate Professors

ALI AKGUNDUZ, PhD University of Illinois at Chicago, PEng

BRANDON W. GORDON, PhD Massachusetts Institute of Technology, APEGGA

MEHDI HOJJATI, PhD Concordia University, PEng

HENRY HONG, PhD Concordia University, ing.

ONUR KUZGUNKAYA, PhD University of Windsor, PEng

SIVAKUMAR R. NARAYANSWAMY, PhD Nanyang Technological University, PEng

HOI DICK NG, PhD McGill University, ing.

ROLF WÜTHRICH, DSc École Polytechnique Fédérale de Lausanne

Associate Professors Emeriti

KALMAN I. KRAKOW, MS California Institute of Technology

RAFIK A. NEEMEH, PhD McGill University

Assistant Professors IVAN CONTRERAS, PhD Technical University of Catalonia, Spain MASOUMEH KAZEMI ZANJANI, PhD Université Laval

Extended Term Appointments JOHN CHEUNG, PhD Cranfield University, PEng ALEXANDRE PARADIS, PhD École de Technologie Supérieure

Affiliate Professor

PAUL-ÉMILE BOILEAU, PhD Concordia University

Affiliate Associate Professors
FARHAD AGHILI, PhD McGill University
ALA-EDDIN AL MOUSTAFA, PhD Université Paris XIII
CHANDRA ASTHANA, PhD Indian Institute of Science
XINJIN CAO, PhD University of Birmingham
DOMINIQUE DEROME, PhD Concordia University
PIERRE GAUTHIER, PhD Concordia University
ELENA KONOPLEVA, PhD Mariupol Metallurgical Institute
PIERRE MARCOTTE, PhD Virginia Polytechnic Institute and State University
CAMILLE-ALAIN RABBATH, PhD McGill University

Affiliate Assistant Professors
ALI BONAKDAR, PhD Concordia University
MOHAMMED FAYED, PhD Concordia University

For the complete list of faculty members, please consult the Department website.

Location

Sir George Williams Campus
Engineering, Computer Science and Visual Arts Complex, Room: EV 004.139
514-848-2424, ext. 3125

Department Objectives

The Department of Mechanical and Industrial Engineering offers three distinct undergraduate programs: BEng in **Mechanical Engineering**, BEng in **Industrial Engineering** and BEng in **Aerospace Engineering**.

Mechanical Engineering is concerned with all forms of power generation (hydro-electric, steam, internal combustion, nuclear, jet rocket, and fuel cells), the design of mechanisms and machines, transportation systems, controls and automation, vibration analysis, environmental control (heating, ventilation, and refrigeration), materials handling, and precision measurement. The Mechanical Engineering curriculum consists of a combination of core courses with a series of technical electives that allow students to obtain some specialization in a particular area of the field depending on their interests and expected future professional activity. Three options are available: Aerospace and Propulsion Engineering; Design and Manufacturing Engineering; and Systems and Mechatronics.

Industrial Engineering is concerned with the design, organization, analysis, and integration of people and industrial systems components in order to achieve or enhance effectiveness. These components include whole machines, transportation and conveyance elements, physical plant, organizational frameworks, schedules, and budgets. The Industrial Engineering curriculum is therefore designed to give students the background needed to define and solve problems related to the conception, improvement, integration, and implementation of industrial systems.

The Aerospace Engineering program is offered jointly with the Department of Electrical and Computer Engineering. The detailed description of this program can be found in §71.55.

71.40.1 Course Requirements (BEng in Mechanical Engineering)

The program in Mechanical Engineering consists of the Engineering Core, the Mechanical Engineering Core, and option requirements as shown below. The minimum length of the program is 120 credits.

Engineering Core (27 credits) See §71.20.5.

Mechanical Engineering Core		Credits
ENGR 242	Statics	3.00
ENGR 243	Dynamics	3.00
ENGR 244	Mechanics of Materials	3.75

ENGR 251 ENGR 311 ENGR 361 MECH 211 MECH 215 MECH 221 MECH 311 MECH 313 MECH 321 MECH 344 MECH 351 MECH 351 MECH 352 MECH 361 MECH 368 MECH 370 MECH 371 MECH 375 MECH 375 MECH 390	Thermodynamics I Transform Calculus and Partial Differential Equations Fluid Mechanics I Mechanical Engineering Drawing Programming for Mechanical and Industrial Engineers Materials Science Manufacturing Processes Machine Drawing and Design Properties and Failure of Materials Theory of Machines Machine Element Design Thermodynamics II Heat Transfer I Fluid Mechanics II Electronics for Mechanical Engineers Modelling, Simulation and Control Systems Analysis and Design of Control Systems Mechanical Engineering Design Project	3.00 3.00 3.50 3.50 3.50 3.75 3.00 3.50 3.50 3.50 3.50 3.50 3.50 3.5
MECH 390	Mechanical Engineering Design Project	3.00 73.25

Option Requirements

Students in the Mechanical Engineering program must complete at least 19.75 elective credits from within one of options A, B, or C. Prior to registration for elective courses, students indicate their choice of option on a form available from the Department, which must be submitted to the Chair's office for approval prior to March 30. With permission of the Department, students may take one technical elective course from another option. Students work in the area of their option within their MECH 490 project.

1. Option A — Aerospace and Propulsion
Students must complete the following compulsory courses from the Option Core and at least 12.75 credits from the Option Electives.

Option A Core		Credits
AERO 464 MECH 490A	Aerodynamics Capstone Mechanical Engineering Design Project	3.00 4.00
Option A Electives		Credits
AERO 417 AERO 431 AERO 462 AERO 465 AERO 480 AERO 482 AERO 483 AERO 485 AERO 486 AERO 487 ENGR 411 ENGR 412 MECH 452 MECH 453 MECH 460 MECH 498	Standards, Regulations and Certification Principles of Aeroelasticity Turbomachinery and Propulsion Gas Turbine Design Flight Control Systems Avionic Navigation Systems Integration of Avionics Systems Introduction to Space Systems Aircraft Stress Analysis Design of Aircraft Structures Special Technical Report Honours Research Project Heat Transfer II Heating, Ventilation and Air Conditioning Systems Finite Element Analysis Gas Dynamics Topics in Mechanical Engineering	3.00 3.00 3.00 3.50 3.50 3.00 3.00 3.00

2. Option B — Design and Manufacturing

Students must complete the following compulsory courses from the Option Core and at least 12.25 credits from the Option Electives.

Option B Core		Credits
MECH 412	Computer-Aided Mechanical Design	3.50
MECH 490B	Capstone Mechanical Engineering Design Project	4.00
Option B Electives		Credits
ENGR 411	Special Technical Report	1.00
ENGR 412	Honours Research Project	3.00
INDU 372	Quality Control and Reliability	3.00

INDU 410	Safety Engineering	3.50
INDU 411	Computer Integrated Manufacturing	3.50
INDU 440	Product Design and Development	3.00
MECH 411	Instrumentation and Measurements	3.50
MECH 414	Computer Numerically Controlled Machining	3.50
MECH 415	Advanced Programming for Mechanical and Industrial Engineers	3.00
MECH 421	Mechanical Shaping of Metals and Plastics	3.50
MECH 422	Mechanical Behaviour of Polymer Composite Materials	3.00
MECH 423	Casting, Welding, Heat Treating, and Non-Destructive Testing	3.50
MECH 424	MEMS — Design and Fabrication	3.50
MECH 425	Manufacturing of Composites	3.50
MECH 426	Stress and Failure Analysis of Machinery	3.00
MECH 460	Finite Element Analysis	3.75
MECH 498	Topics in Mechanical Engineering	3.00

3. Option C — Systems and Mechatronics

Students must complete the following compulsory course from the Option Core and at least 15.75 credits from the Option Electives.

Option C Core		Credits
MECH 490C	Capstone Mechanical Engineering Design Project	4.00
Option C Electiv	ves	Credits
AERO 480 AERO 482 ENGR 411 ENGR 412 ENGR 472 MECH 411 MECH 415 MECH 444 MECH 447 MECH 448 MECH 454 MECH 463 MECH 471 MECH 472 MECH 473 MECH 473 MECH 474 MECH 498	Flight Control Systems Avionic Navigation Systems Special Technical Report Honours Research Project Robot Manipulators Instrumentation and Measurements Advanced Programming for Mechanical and Industrial Engineers Guided Vehicle Systems Fundamentals of Vehicle System Design Vehicle Dynamics Vehicular Internal Combustion Engines Fluid Power Control Microcontrollers for Mechatronics Mechatronics and Automation Control System Design Mechatronics Topics in Mechanical Engineering	3.50 3.00 1.00 3.00 3.50 3.50 3.00 3.50 3.00 3.50 3.5

71.40.2 Course Requirements (BEng in Industrial Engineering)

The program in Industrial Engineering consists of the Engineering Core, the Industrial Engineering Core, and elective credits as shown below. The minimum length of the program is 120 credits.

Engineering Core (27 credits) See §71.20.5.

Industrial Engineering Core		Credits
ENGR 244 ENGR 245 ENGR 251 ENGR 311	Mechanics of Materials Mechanical Analysis Thermodynamics I Transform Calculus and Partial Differential Equations	3.75 3.00 3.00 3.00
INDU 211 INDU 311 INDU 320 INDU 321	Introduction to Production and Manufacturing Systems Simulation of Industrial Systems Production Engineering Lean Manufacturing	3.00 3.50 3.00 3.00
INDU 323 INDU 324 INDU 330	Operations Research I Operations Research II Engineering Management	3.00 3.00 3.00
INDU 371 INDU 372 INDU 411	Stochastic Models in Industrial Engineering Quality Control and Reliability Computer Integrated Manufacturing	3.00 3.00 3.50

INDU 412	Human Factors Engineering	3.50
INDU 421	Facilities Design and Material Handling Systems	3.50
INDU 423	Inventory Control	3.50
INDU 490	Capstone Industrial Engineering Design Project	4.00
MECH 211	Mechanical Engineering Drawing	3.50
MECH 215	Programming for Mechanical and Industrial Engineers	3.50
MECH 221	Materials Science	3.00
MECH 311	Manufacturing Processes	3.75
MECH 313	Machine Drawing and Design	3.00
		75.00

Electives

Students must complete a minimum of 18 credits from the following courses, including at least three INDU courses and with no more than two of the courses marked *.

		Credits
BSTA 478*	Data Mining Techniques	3.00
BTM 430*	Enterprise Resource Planning and	
	Information Technology Integration	3.00
BTM 480*	Project Management	3.00
ENGR 361	Fluid Mechanics I	3.00
ENGR 411	Special Technical Report	1.00
ENGR 412	Honours Research Project	3.00
INDU 410	Safety Engineering	3.50
INDU 440	Product Design and Development	3.00
INDU 441	Introduction to Six Sigma	3.00
INDU 442	Logistics Network Models	3.00
INDU 466	Decision Models in Service Sector	3.00
INDU 475	Advanced Concepts in Quality Improvement	3.00
INDU 498	Topics in Industrial Engineering	3.00
MANA 300*	Entrepreneurship: Launching Your Business	3.00
MECH 321	Properties and Failure of Materials	3.50
MECH 352	Heat Transfer I	3.50
MECH 361	Fluid Mechanics II	3.50
MECH 370	Modelling, Simulation and Control Systems	3.50
MECH 371	Analysis and Design of Control Systems	3.75
MECH 412	Computer-Aided Mechanical Design	3.50
MECH 415	Advanced Programming for Mechanical and Industrial Engineers	3.00
MECH 421	Mechanical Shaping of Metals and Plastics	3.50
MECH 423	Casting, Welding, Heat Treating and Non-Destructive Testing	3.50
MECH 425	Manufacturing of Composites	3.50