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a  b  s  t  r  a  c  t

When  learning  a new  motor  sequence,  we must  execute  the  correct  order  of  movements  while
simultaneously  optimizing  sensorimotor  parameters  such  as  trajectory,  timing,  velocity  and  force.  Neuro-
physiological  studies  in animals  and  humans  have  identified  the major  brain  regions  involved  in  sequence
learning,  including  the  motor  cortex  (M1),  basal  ganglia  (BG)  and  cerebellum.  Current  models  link  these
regions  to  different  stages  of  learning  (early  vs. late)  or  different  components  of  performance  (spatial  vs.
sensorimotor).  At  the  same  time,  research  in  motor  control  has  given  rise  to  the  concept  that  internal
models  at  different  levels  of  the  motor  system  may  contribute  to  learning.  The  goal  of  this  review  is
to  develop  a new  framework  for  motor  sequence  learning  that  combines  stage  and  component  models
within  the  context  of  internal  models.  To do this, we  review  behavioral  and  neuroimaging  studies  in
humans  and  neurophysiological  studies  in animals.  Based  on this  evidence,  we  present  a  model  propos-
ing  that  sequence  learning  is underwritten  by  parallel,  interacting  processes,  including  internal  model
formation  and  sequence  representation,  that  are  instantiated  in  specific  cerebellar,  BG  or  M1  mech-
anisms  depending  on task demands  and  the  stage  of  learning.  The  striatal  system  learns  predictive
stimulus–response  associations  and  is critical  for motor  chunking.  The  role of the  cerebellum  is  to acquire
the optimal  internal  model  for  sequence  performance  in  a particular  context,  and  to  contribute  to error
correction and  control  of  on-going  movement.  M1 acts  to  store  the  representation  of  a  learned  sequence,
likely  as part  of  a distributed  network  including  the  parietal  lobe  and  premotor  cortex.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

When making a jump shot from 15 feet out, a basketball player
seamlessly performs a sequence of actions – set, jump and release
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– that must be perfectly coordinated to put the ball through the
hoop. To execute the shot, the player must order the movements
correctly, but most importantly, optimize the timing, force and tra-
jectory of the individual components. When an athlete first learns
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the shot, the sequence of movements is disjointed, poorly con-
trolled and requires enormous attention to execute. After many
hours of practice, the individual components become smooth,
efficient and can be executed on the fly, even in the heat of a
game.

The kinds of complex sequences performed in professional
sports or music are difficult to study in the laboratory, but over
the last 15–20 years neuroscientists have used simpler tasks to
examine how humans learn motor sequences, and the brain mech-
anisms that underlie this learning [1–7]. Behavioral studies have
generally agreed that sequence learning occurs in partially separa-
ble stages: an early phase where changes are rapid, a consolidation
phase where the sequence becomes resistant to interference, and
a slow-learning phase where movement timing, kinematics and
dynamics are optimized [8–10]. Brain imaging and other neuro-
physiological studies in animals and humans have identified the
major brain networks involved in sequence learning, including
motor and premotor regions, basal ganglia, cerebellum and parietal
cortex [3,4,6,7,11]. Models attempting to link these brain mecha-
nisms to different stages of learning have recently been developed,
and propose that distinct cortico-striatal and cortico-cerebellar
loops are associated with learning at different stages [3,4]. These
models use a general cognitive framework, and take less account of
theories of motor control. Other models of motor sequence learning
have also focused on the contributions of striatal and cerebellar cir-
cuits, but have linked them to learning of different components of
performance, such as spatial location and speed [2,6]. These com-
ponent models have not been widely extended to neuroimaging
data in humans, and do not include learning of other motor param-
eters such as velocity, force and timing. Finally, data from the field
of motor control and motor adaptation have generated detailed
information about how internal models at different levels of the
motor system (i.e., cerebellum and parietal cortex) may  contribute
to learning by integrating motor and sensory information to update
existing motor programs or create new ones [11–13].  Theories
incorporating internal models are highly influential in the domain
of motor control and adaptation, but have not typically been inte-
grated into theories of motor sequence learning. Therefore, the goal
of the present review is to integrate stage and component mod-
els of motor sequence learning, and to frame this in terms of the
contribution of brain networks instantiating internal models. To
do this, we will review behavioral and neuroimaging studies that
demonstrate that sequence learning can be separated into spa-
tial/sequential and motor control components [6,14–18], and that
show that learning of these components is supported by different
brain mechanisms [19–23].  Finally, we will show how learning of
different components can be understood in terms of the contribu-
tions of internal models to error processing and representation of
learned sequences. Based on our own data, we will give an exam-
ple of how the contributions of these mechanisms change with
learning in the cerebellum, striatum and M1.  Finally, we present
a model proposing that sequence learning is underwritten by par-
allel, interacting processes, such as error correction, internal model
formation, stimulus–response association and sequence represen-
tation, that are instantiated in specific cerebellar, striatal or M1
mechanisms. Therefore, the ensemble of regions that are engaged
at a particular phase of learning depends on task demands that call
upon these specific mechanisms.

2. What is motor sequence learning?

Motor sequence learning is the acquisition and optimization of a
novel series of inter-related movements. During initial acquisition
the order of movements is learned and with continued practice
the motor parameters are optimized, resulting in accurate and

efficient performance. A large number of studies have addressed
how sequence order is acquired, focusing on implicit and explicit
learning mechanisms [1,7]. However – as in the example of the
jump shot – we  believe that the fundamental problem for the motor
learning system is not simply acquiring the order of movements,
but in optimizing the entire sequence for successful performance.

Most studies of motor sequence learning examine the acquisi-
tion of novel sequences of simple movements and look for changes
in accuracy of the sequential order and improvements in speed.
Sequence learning is often contrasted with motor adaptation,
where a known movement is adapted to a changed environment,
as in learning to drive a new car or adapting to physical changes
following an injury. Although this review is focused on motor
sequence learning, we  will integrate some relevant experimental
and theoretical information from studies of motor adaptation.

The most common paradigm for studying motor sequence learn-
ing is the serial reaction time task (SRT) in which participants learn
a sequence of key-press movements in response to a visual cue
[7,24]. Improvements in performance on this task are measured by
decreases in the number of errors and shortening of reaction time.
A related task, where subjects learn to tap a series of locations on a
square grid (2 × N), was developed for testing sequence learning in
both animals and humans [25,26].  Another commonly used task is
the finger-to-thumb opposition task, in which participants practice
a short sequence of finger-to-thumb movements with the goal of
performing as quickly and accurately as possible [27]. Finally, other
tasks have been developed to test learning of a sequence of reach-
ing movements [15,28], force-pulses [29,30], and eye movements
[31,32].

Learning in motor sequence tasks is generally assessed in terms
of changes in the number of errors, changes in reaction time (RT)
in response to a cue, and/or in the overall time to execute the
sequence. In most tasks, improvements in error occur relatively
rapidly, while RT improves more slowly. Error is usually opera-
tionalized as the wrong movement at the wrong time, but in some
tasks it may  represent overall deviation from a desired movement
profile [28–30].  Changes in RT with learning can be absolute, as in
the finger-to-thumb opposition task, where change in the speed
of execution of the entire sequence is measured, or relative, as in
the SRT, where changes in RT for a learned sequence are com-
pared to performance of an equal-length sequence of randomly
cued responses.

A significant theoretical issue in this domain is how to sepa-
rate changes in learning of the sequence of responses per se from
changes in implementation or performance that occur with practice
[7,33,34]. A newly acquired sequence of movements is slow, inac-
curate, and jerky, whereas a well-learned sequence is fast, accurate
and smooth. Therefore, if performance changes with practice, it is
difficult to know whether this change is related to an enhanced
neural representation of the sequence or simply to more efficient
implementation. A number of different methods have been used
to try to control for changes in performance including: comparison
with a baseline matched for speed [34]; fixed timing [21–23,27,35]
and using a distractor task to prevent changes in performance dur-
ing learning of the sequence [33,36]. These types of controls are
critically important to assessing changes specific to the represen-
tation of the sequence. However, they do not address another basic
issue, which is that in motor learning, changes in performance
are changes in learning. The problem in perfecting a jump shot is
not primarily whether to jump or shoot first, but in executing the
sequence skillfully enough to get the job done. What the brain must
encode during learning is not just a representation of the sequential
order of movements, but a set of optimal movement implemen-
tation parameters. Learning of sequences and the adaptation of
movement likely occur simultaneously [20,37]. In this review, we
propose that acquisition and representation of sequential order and
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motor optimization are partially separable, but that the learned
sequence is a dynamically changing, integrated representation.

3. Implicit vs. explicit learning

Within the field of motor sequence learning, there is long tra-
dition of research focused on separating the behavioral and neural
correlates of implicit and explicit learning. This originated with the
finding that amnesic patients, like HM,  showed preserved motor
learning [38,39]. Subsequent research has systematically examined
the hypothesis that motor learning predominantly taps the implicit
or procedural memory system and does not require explicit pro-
cessing [1,7]. These studies use tasks where explicit awareness of
the sequence is restricted such that only implicit mechanisms can
operate. Explicit control of learning is minimized by using concate-
nated sequences [24], dual-task paradigms that distract attention
[33,36], or learning of higher-order sequences that cannot be iden-
tified explicitly [40]. In these tasks, what is likely learned is the
probabilistic association of a series of motor responses based on
preceding responses and/or the cuing stimuli. Some brain imag-
ing and patient studies have suggested that the BG system plays
a specialized role in implicit learning; and its contribution has
been hypothesized to be based on striatal mechanisms involved
in associative learning [7,41–43]. Other models propose that dur-
ing explicit learning anterior frontal lobe is engaged early, with
motor cortical regions engaged later, and that conversely, during
implicit learning, motor cortical regions are engaged early, with
frontal regions implicated later [1].

This work has generated important information about purely
implicit mechanisms for acquiring a sequence of responses, but in
most real-world situations motor learning is not purely implicit.
When we learn to tie our shoes, we learn the sequence of move-
ments through both more explicit (teaching) and more implicit
(practice) means. However, we also learn in ways that combine
both, such as observation and trial and error. Practice then produces
improvements in execution through relatively implicit or procedu-
ral means. Thus, the movement sequence is acquired through both
implicit and explicit means, but what is acquired largely implicitly
is the set of motor control parameters required for skilled perfor-
mance.

Another issue not usually addressed by studies focused on sepa-
rating implicit and explicit processing is that particular behavioral
measures of learning may  tap into more or less explicit/implicit
aspects of performance. Stimulus–response associations, such as
cue-response mapping or spatial location, are more open to explicit
control, whereas optimization of movement parameters such as
speed, timing and co-articulation are largely implicit. Finally, and
most importantly, the contributions of implicit and explicit control
factors may  change across learning depending on task demands.

As will be described below, we and others have begun to separate
different components of learning that rely on more or less explicit
and implicit processes [11,15,19,20,25]. However, we will argue
in this review that a comprehensive model of motor skill learn-
ing should include an integrated contribution of both explicit and
implicit processes.

4. Theoretical models of motor sequence learning

Models of motor sequence learning have generally converged
around the concept that there are separable stages of acquisition
that can be identified from behavioral data and that are under
the control of specific brain networks [6,7,11,27,35,44] (Fig. 1).
First, there is an early phase where improvements in performance
are rapid and explicit executive control and memory processes
may  be required. Then, there is a consolidation phase where per-
formance may  show incremental improvements and/or become
resistant to interference. Consolidation is thought to be depen-
dent on both sleep and the passage of time [45–48]. Third, there
is a slow learning phase where performance is optimized. This
phase is also described as the “automatization” phase, based on the
idea that with extended practice performance becomes less atten-
tionally demanding and/or can be performed entirely implicitly
[4,35]. Delayed recall of motor sequences has been less frequently
examined, but studies that have tested retention have shown that
performance is often surprisingly robust over long periods of time
[17,21,49,50]. These putative stages of motor sequence learning are
identifiable in many behavioral studies, but how well the pattern
of performance changes fits the stage model is quite variable and
task-dependent.

Based on this general pattern of behavioral findings, Doyon
has developed an influential model (see Fig. 1, Panel A) where
changes in performance across stages of learning are framed in
terms of the differential contributions of cortical–cerebellar and
cortical–striatal loops [3,4,51]. In this model, early rapid changes in
performance are attributed to both cortico-cerebellar and cortico-
striatal mechanisms. Learning during the early stage also includes
possible contributions from frontal and hippocampal executive
control and memory mechanisms in tasks where learning is under
explicit control. Following early learning, striatal mechanisms are
proposed to contribute specifically to consolidation of learned
sequences. Finally, sequence retention is hypothesized to be sup-
ported by a network including the striatum, motor and parietal
cortices. This model also addresses learning in motor adaptation
tasks, and its strength is that it proposes global mechanisms that
contribute to specific stages in both sequence learning and adapta-
tion tasks.

In contrast, other theories of motor sequence learning have
focused on understanding the neural mechanisms required to

Fig. 1. This figure illustrates the stage (Panel A) and component (Panel B) models of motor sequence learning. These illustrations are adapted from similar figures from Doyon
et  al. [3] and Hikosaka et al. [6]. Both figures have been adapted to focus on structures relevant for motor sequence learning.
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learn different task components; separating learning of the spa-
tial/sequential/kinematic order of movements and learning of
movement dynamics, such as speed, timing and sensorimotor inte-
gration [2,6]. Hikosaka and colleagues have proposed that learning
of these components proceeds in parallel, but that they have
different times courses and are controlled by different cortico-
striatal and cortico-cerebellar loop circuits (see Fig. 1, panel B).
They suggest that the spatial/sequential/kinematic component,
expressed in terms of accuracy, is learned more quickly and is
under more explicit control. This component is dependent on cir-
cuits linking frontal, parietal and premotor regions with caudate
and lateral cerebellar association areas. On the other hand, the
dynamic/motor control component, expressed in terms of changes
in speed and other motor parameters, occurs more slowly and
is under less explicit control. Learning of this component is con-
trolled by circuits linking motor cortical regions with the putamen
and midline cerebellar regions. In addition, they propose that
reward-based learning in striatum and error-based learning in
cerebellum would contribute to shaping responses. This model
predicts that performance improvements during early learning
are dominated by circuits mediating spatial/sequential learning
(based on more explicit reward-based learning) while those of later
learning are predominantly influenced by mechanisms more rele-
vant for motor optimization (based on error-based learning). More
recently, stage theories have begun to incorporate ideas from com-
ponent models [17,23,34] and in this review we propose a model
where stages of learning are understood in terms of the differen-
tial rate of acquisition of specific components depending on task
demands.

5. Behavioral evidence for different components of motor
sequence learning

Research on motor skill learning in our laboratory has focused
primarily on understanding the neural mechanisms important
for optimizing performance, rather than on those required to
learn sequential order. In other words, we are interested in
understanding how the athlete perfects the jump shot once the
sequence of movements is known. To do this, we have used a
variety of tasks where the sequence to be learned is more or less
explicitly available, and have focused on changes in motor perfor-
mance. We  have drawn on both the stage and component models

of learning in our studies of younger and older adults, children,
and trained musicians. Overall, our findings support the idea that
there are partially separable behavioral components in learning,
and that these components are controlled by distinct brain mecha-
nisms. In the following section we review evidence that shows that
the spatial/sequential vs. motor control components of learning
show different time-scales of acquisition, are more or less sus-
ceptible to delay, show differential changes across development,
and are differently affected by musical training. In the second sec-
tion, we review brain imaging data that demonstrate that different
brain networks may  contribute to learning of these components.
Finally, based on these data, we  will try to integrate the stage and
component models into a framework for motor sequence learn-
ing. This framework is centered on the idea that there are parallel
interacting contributions of cerebellar, striatal, or motor cortical
mechanisms depending on the stage of learning and the component
of the sequence being learned.

We  have used two  different variants of the SRT in our labo-
ratory. The timed motor sequence task (TMST; see Fig. 2, panel
A) requires participants to tap in synchrony with a complex 10-
element sequence of short and long duration visual cues [17].
Performance gains on this task are assessed by comparing the
learned sequence with a simple sequence that contains the same
number of short and long duration taps. This task requires only
a single finger response, allowing us to assess optimization of a
sequence of movements that does not include spatial processing.
The multiple finger sequence task (MFST; see Fig. 2, panel B) is very
similar to the SRT, where participants reproduce a 10–13 element
sequence in response to a set of visual cues using four fingers of the
right hand [16,52].  Performance gains on this task are assessed by
comparing the learned sequence with a random baseline. Finally,
we have used an auditory rhythm synchronization task to allow
us to generalize beyond the visuomotor synchronization domain
to musical rhythm production [53]. For both tasks performance is
measured in terms of accuracy (i.e., the correct order of responses)
and response synchronization (i.e., how well responses are
synchronized with the stimuli). We consider the accuracy mea-
sure to represent the sequential/spatial component of the task
that is more directly under explicit control, and the synchrony
measure to represent the motor control component of the task
that is less directly under explicit control. The duration of stim-
uli and interstimulus intervals remain fixed in these tasks to

Fig. 2. This figure illustrates the TMST (Panel A) and MFST (Panel B) sequence learning paradigms developed in our laboratory. The sequence types, visually presented stimuli,
and  response methods are shown.
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ensure that changes in synchronization performance that occur
with learning are not related to overall changes in movement
speed.

Based on work in both animals and humans, Hikosaka et al. [6]
proposed that the sequential/spatial component of a sequence was
learned more rapidly than the motor control component. Consis-
tent with this, across different studies using both the TMST and
MFST, we have found that gains in accuracy reach a plateau after
2–3 days of training whereas synchronization continues to change
across additional days of practice. Why  might there be differences
in the time-frame of learning of these two components? First, accu-
racy may  be easier to learn because the cue and the response in
this domain have a direct one-to-one mapping, even in the TMST
where the association is between a time interval (short or long)
and the response. In contrast, mapping of a well-synchronized
response is less direct, with many motor parameters such as timing,
velocity and force contributing to performance. This is consistent
with behavioral and neuroimaging studies showing that complex-
ity of stimulus–response associations affects sequence learning
[54]. Differences in the time-frame of learning may  also result from
the simple fact that without an accurate spatial/sequential profile,
motor control components cannot be optimized [15]. Interestingly,
our results show that this is true for learning a sequence with no

spatial component. This is also consistent with evidence from adap-
tation learning indicating that there are interacting fast and slow
components of learning [55].

In long-term learning studies in animals, Hikosaka also showed
that the two components of performance were retained differ-
ently [25]. Consistent with this, we varied the length of delay
between learning and recall of the TMST from 1 to 6 weeks (Fig. 3,
Panel A). We  found that while all delays affected synchronization
performance, only the longest delay affected accuracy [17]. This
indicates that the spatial/sequential component is better retained,
and that the motor control component requires on-going practice
for maintenance. These findings make sense if we  again think of
the spatial/sequential component as more explicit, with a one-to-
one mapping that is easier to recall. In contrast, the motor control
component is less explicit and requires integration of multiple
parameters for accurate performance and thus is more susceptible
to degradation or interference with delay.

Further evidence for the separability of different components of
learning comes from a study in which we  tested three groups of
children (ages 6, 8 and 10) on the MFST across two days of prac-
tice [16] (Fig. 3, Panel B). All age groups were able to learn the
task, and similar to adults, accuracy improved more quickly than
synchronization. For the accuracy measure, we found that after

Fig. 3. TMST and MFST behavioral findings. Panel A shows the results of experiments examining the effect of variable delay on retention of the TMST in young adults [17].
Results showed that percent correct performance (left) is affected only by the longest delay, whereas response synchronization is affected by all delays (right). Panel B shows
the  results of an experiment examining learning of the MFST in 6, 8 and 10-year-old children compared to adults [16]. Results showed that for percent correct performance
(left)  only 6-year-olds performed worse than adults by the end of the second day of practice, whereas for response synchronization (right) all children still performed worse
than  adults at the end of the second day.
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two days of practice all except the youngest group were able to
perform at adult levels. In contrast, for synchronization, all chil-
dren performed less well than adults throughout training. These
results suggest that the brain mechanisms required for learning of
the sequential/spatial component of the task develop earlier than
those required for motor control and optimization.

Finally, in a series of experiments assessing the impact of musi-
cal training on sequence learning, we compared the performance
of musicians and non-musicians on both the TMST and an auditory
rhythm synchronization task. For auditory rhythm synchroniza-
tion, the results showed that non-musicians could perform as well
as musicians on the sequential component of the task, but that
musicians outperformed non-musicians on the motor synchro-
nization component of the task [56]. In addition, we  showed that
musicians who began training before age seven out-performed
musicians who began training later for the motor, but not the
sequential, component of the task [14,18]. Taken together, these
results indicate that the spatial/sequential component of motor
learning is less affected by the age of onset of training than the
motor control component.

A final example of the dissociation between the sequential
and motor components of learning comes from a study using a
sequential reaching task [15]. To assess learning of the sequential
order of reaches, the authors measured the number of anticipatory
responses to the target location – reasoning that an anticipatory
response indicated some explicit information about the location
of the upcoming target. To assess the motor control component of
learning they measured the accuracy of the reach trajectory, mea-
suring smoothness and variability. Their results showed that the
sequential component was acquired more quickly, and that the
motor component continued to improve even after the sequence
was explicitly known. Further, they showed that these measures
were differentially affected by consolidation and interference.

Combined with our findings on the effects of delay [17], these
results support the idea that the motor control component of
sequence learning can show an almost infinite degree of optimiza-
tion with practice, but that it requires continuous updating for
maintenance. This explains why professional athletes and musi-
cians practice every day, even though they know the explicit
sequence of movements by heart.

6. Neuroimaging evidence for stages and different
components of motor sequence learning

Over the last ten years, a large number of neuroimaging studies
have examined how cortical and subcortical motor regions con-
tribute to sequence learning. These results converge in showing
the involvement of motor cortical, striatal and cerebellar networks,
but do not provide consistent evidence for disociable contribu-
tions of these systems to specific phases of learning. The most
consistent finding is decreasing cerebellar activity with learning
[21,22,29,30,57–59],  with some studies showing increasing activity
in the cerebellar nuclei as early learning progresses [29,30,57,58].
In contrast, however, studies of tool-learning have demonstrated
increases in cerebellar activity as expertise is acquired [60–62].  For
the striatum, the majority of studies show increases in activity with
extended practice [21,22,57,58],  but the time-frame of increases
varies considerably across studies (from hours to days) and some
studies have also shown decreases with learning [29,59].  Finally,
activity in motor cortex has also not been clearly linked to specific
stages of learning, with some studies showing decreasing activ-
ity with practice [36,59] and others showing increasing activity
[21–23,27,35].

In order to test the contributions of these different motor net-
works to sequence learning in a more systematic way, a series of

neuroimaging studies from our laboratory have examined learn-
ing of the TMST both within and across multiple days of practice,
as well as at delayed recall. The goal of these experiments was  to
identify the brain networks engaged at different stages of learning,
and to attempt to separate regions engaged by the sequential and
motor control components of learning. The first experiment used
positron emission tomography (PET) to study learning of the TMST
on the first day of training, after five days of practice and at one-
month delayed recall (Fig. 4, top panel) [21]. On Day 1 of learning,
greater activity was  observed in bilateral cerebellar cortex for the
trained sequence. When comparing Day 5 to Day 1, results showed
decreased activity in the cerebellum, with increased activity in
the putamen. Comparing Recall to Day 5 revealed greater activ-
ity in M1,  premotor, and inferior parietal cortex. We  interpreted
these results as indicating that during early learning cerebel-
lar mechanisms are involved in adjusting movement kinematics
according to sensory input to produce accurate motor output. Fur-
ther, we  hypothesized that during late learning the BG might be
involved in automatization, and that at delayed recall movement
parameters appeared to be encoded in a distributed motor cortical
representation.

To test the hypothesis that decreases in cerebellar activity were
specific to early learning, and to assess whether these changes were
related to changes in the sequencing or motor control component of
the task, a second experiment examined TMST learning across three
blocks of practice on a single day [22] (Fig. 4, middle panel). Simi-
lar to the previous across-day results, we  found that activity in the
cerebellum was  greatest for the first block of practice and decreased
with training. Unexpectedly, at the end of training on Day 1 we  saw
increases in activity in putamen and M1,  similar to those observed
after five days of training and delayed recall in the previous exper-
iment. The finding that the same regions were active across very
different time frames of learning suggested that different stages of
learning were underwritten by similar brain mechanisms. Further,
behavioral regression analyses showed that activity in the lateral
cerebellar hemispheres and M1 was  correlated with changes in per-
formance for both the sequence and motor control components
of the task. Most importantly, inter-regional correlation analyses
showed that activity in M1  and cerebellum was correlated during
learning, suggesting that interactions between these regions were
directly related to learning (Fig. 4, bottom panel).

In order to test the hypothesis that similar motor networks are
engaged across different stages of learning, we used fMRI to exam-
ine learning of the TMST across five days of practice [23] (Fig. 5).
Consistent with our previous findings, activity on Day 1 was domi-
nated by the cerebellum, bilateral caudate, and pre-motor regions.
Across days of learning, as performance improved, activity in these
regions decreased while activity in the hippocampus, frontal cortex,
and putamen increased. Importantly, within the context of these
global decreases, we found specific regions of left M1 and right
cerebellar VIIIA/VIIB that were positively correlated with improve-
ments in synchronization performance. In parallel, improvements
in accuracy were correlated with increases in hippocampus, BA
9/10, and the putamen. Thus, changes in accuracy and synchro-
nization were found to be related to two  different sets of brain
regions, suggesting that these networks optimize different com-
ponents of learning. Specific increases in sensorimotor cerebellar
cortex are a relatively novel finding for motor sequence learning,
but are consistent with evidence for the development and refine-
ment of internal models within the cerebellum [60–62].  In addition,
we also found that activity in M1  on Day 1 was  predictive of gains in
performance between Days 1 and 2; consistent with previous find-
ings [36,63]. Finally, we showed that correlated activity between
M1 and the cerebellum was  greater on Day 5 than Day 1, suggest-
ing that M1  and the cerebellum form an integrated representation
of the well-learned sequence.
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Fig. 4. Results from two PET studies examining TMST learning across days of learning and at delayed recall (top panel) [21] and within a single day of learning (middle and
bottom  panels) [22]. The top and middle panels demonstrate the similarity between the cerebellar, BG and motor cortical regions found to be active across and within days of
learning. The bottom panel shows the functional correlations observed between activity M1 and cerebellum, where greater activity in M1 was  related to decreased activity
in  the cerebellar cortex.

The combined results of these three experiments clearly show
that the cerebellum, striatum, and motor cortical regions are all
engaged in motor sequence learning, but that their contributions
are likely not confined to particular stages. Further, they show
that cerebellar–M1 interactions are directly related to learning,
and that both M1  and the cerebellum may  encode long-term rep-
resentations of learned sequences. In the next section we discuss
specific cerebellar, striatal, and M1  mechanisms that are involved in
learning. We  will then present an integrated framework describing
how these mechanisms might work together to underwrite learn-
ing of different sequence components across multiple stages of
acquisition.

7. What does the cerebellum do? – forward models of the
sensory consequences of action

The cerebellum receives sensory and motor information from
both descending cortical pathways and ascending peripheral path-
ways [64–66].  In addition, recent evidence has shown strong

connections to the parietal, premotor and frontal cortex [67–69];
pathways that are more prominent in humans than in other pri-
mates [70]. Based on the unique architecture of the purkinje cell
– climbing fibre – parallel fibre circuit, the cerebellum has been
hypothesized to participate in processes related to sensorimotor
integration, error correction and the formation of internal models.
The dominant current hypothesis about of the role of the cere-
bellum in motor control is that it instantiates internal models
that facilitate optimal performance and learning (For reviews, see:
Refs. [11,12,71–73]). An internal model can be defined as a set of
input-output relations between motor commands and their sen-
sory consequences. Input to the model is the efference copy of a
motor command and output is the predicted sensory consequences
of that action.

Internal models are hypothesized to be critical for motor learn-
ing because they allow for a comparison between the predicted and
actual consequences of a movement, and thus for the assessment of
movement error that is used to guide learning. Internal models in
the cerebellum are thought to be instantiated in the purkinje cell
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Fig. 5. Results of an fMRI study of across day learning of the TMST [23]. Panel A shows specific M1 and cerebellar regions where activity was correlated with percent correct
performance. Panel B shows specific M1  and cerebellar regions where activity was correlated with response synchronization performance. Panel C shows the region of M1
where  activity on Day 1 of learning predicted the degree of consolidation-related performance gain on Day 2. The regions of M1 and cerebellum that showed increasing
functional connectivity between Day 1 and Day 5 are also shown here.

– parallel fibre complexes, where information about motor plans
(efference copy) arrives from the cortical motor system. The climb-
ing fibre system communicates error signals from the inferior olive
that code discrepancies between planned and executed movement,
and is hypothesized to “teach” or modify the existing internal model
during learning. Evidence that cerebellar circuitry has the capacity
to instantiate internal models comes from neurophysiological stud-
ies and computational modeling of cerebellar circuits (For review,
see: Refs. [71,74]). Intriguingly, recent evidence from fMRI stud-
ies of human rule-learning suggest that cerebellar–frontal circuits
may  be involved in automatizing or developing internal models of
cognitive behaviors, similar to the way cerebellar–motor circuits
are involved in motor learning [75].

Evidence that cerebellar circuits are relevant for skill learning
comes from a range of experiments in animals and humans. A
study using genetically modified mice with deficiencies in cere-
bellar function showed that they could learn to swim to a target,
but could not optimize their movement trajectories [76]. Experi-
ments in rats learning a skilled reaching task showed expansion
of the paw representation in cerebellar cortex [77–79].  Work in
patients with cerebellar lesions shows that they can adapt their
movements on-line to respond to a perturbation, but they can-
not learn from previous errors [80,81]. Most persuasively, two
recent brain stimulation experiments have demonstrated the role
of the cerebellum in state estimation – a function closely related
to internal models. In the first study, Miall et al. [82] showed that
TMS  over the cerebellar cortex impaired the accuracy of reaching
movements that depended on state estimation for accuracy. In the
second study, Galea et al. [83] showed that tDCS over the lateral
cerebellum enhanced learning of a visuomotor rotation task by pro-
moting a more rapid decrease in error. Finally, in a recent fMRI
study Grafton [84] decomposed learning on a sequential reach-
ing task into different components, including a specific measure
of error correction. Decreases in error correction across trials were

related to decreases in activity in cerebellar cortex. This is con-
sistent with the global decreases in cerebellar activity observed
with learning in a large number of neuroimaging studies, including
our own  [22,23,30,36,57,84]. Taken together, these results strongly
support the hypothesis that cerebellar mechanisms are important
for modeling the sensory consequences of action and for using this
information to compute error signals relevant for learning.

Another important hypothesized role of the cerebellum in motor
learning is the storage of internal models of learned skills, such as
manipulating a new tool or learning a visuospatial transformation.
In an elegant series of studies, Immamizu et al. [60–62] showed
specific changes in cerebellar cortex as participants learned to
use a new tool. As described above, fMRI results from our lab also
showed specific increases in lobule VIII after long-term training
on the TMST [23]. The activation of lateral cerebellar regions that
connect to the frontal lobe during performance of a well learned
sequence may  also be related to their contribution to the learning
and representation of internal models of sequence rules [75,85].
Despite these findings indicating a role for the cerebellum in
long-term representation of a motor skill, it does not appear to be
required for motor memory, or storage of the motor program itself.
First, cerebellar lesions do not result in the loss of specific skills, but
rather cause incoordination, dysmetria and slowing (For review,
see: Ref. [81]). Second, the TMS  study described above [82] shows
that disruption of the lateral cerebellum during reaching does not
halt movement, but rather appears to disrupt the estimate of the
location of the arm in space. Finally, Grafton et al. [84] showed that
a measure of feedforward control, that was  taken to represent the
acquired internal model for the movement, was related to activity
in motor cortex but not the cerebellum. Overall, current data do not
support the hypothesis that the cerebellum is the site of storage of
an internal model of learned skill. However, as will be discussed
further below, it may  be the case that the cerebellum is part of an
extended network where motor cortical regions serve to store the
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representation of a learned skill while associated
cerebellar–cortical regions store information about the opti-
mal  motor control parameters for performance of that skill within
a particular context.

The idea that the cerebellum might contribute to the long-term
representation of motor skill is supported by evidence of struc-
tural changes in the cerebellum related to learning. In the rat, skill
learning is associated with changes in the microstructure of cere-
bellar cortex [79,86].  In humans, trained musicians show greater
grey matter density in cerebellar cortex than non-musicians [87].
Recent work from our lab has also shown that grey matter con-
centration in the cerebellum is related to the slope of learning on
the TMST in regions similar to those observed in the fMRI study
with the same subjects [88]. Consistent with this, Della-Maggiore
et al. [89] found that white matter integrity in the cerebellum was
related to learning of a visuomotor adaptation task.

8. What does the striatum do? – probabilistic learning and
movement chunking

The BG are a set of subcortical nuclei with prominent con-
nections to the motor system that send and receive information
from cortical and subcortical regions. The most critical structures
for motor sequence learning are in the striatum, which is com-
prised of the caudate nucleus, putamen, and the globus pallidus
– the main output nucleus of the BG. Pathways connecting dif-
ferent cortical regions to the striatum are spatially segregated
and hypothesized to operate as closed-loop circuits [90–93]. The
striatum itself can be roughly divided into three sub-regions: the
anterior–medial striatum – composed of the most anterior portions
of the caudate and putamen; the dorsolateral striatum – composed
of the more posterior and lateral caudate and putamen; and the
ventral striatum – composed of the nucleus accumbens and the
most ventral portions of the caudate and putamen [90,94]. The
anterior–medial striatum is more strongly connected with frontal
and pre-motor cortices. This “associative” circuit has been proposed
to be involved in response selection and evaluation of outcome or
reward. The dorsolateral striatum is more strongly connected to
the sensorimotor and parietal cortices. It has been defined as the
“sensorimotor” circuit, and has been proposed to be important for
encoding motor associations, chunks or “habits” [90]. Interestingly,
recent neuroanatomical studies in primates have shown that there
are multi-synaptic pathways linking the cerebellum and BG [95,96].
The presence of these connections suggests that the independent
contributions of the cerebellum and striatum to motor learning may
be partially integrated.

Stage models of motor sequence learning propose that the
associative and sensorimotor circuits of the striatum contribute
differentially to the early and late phases of learning. The associa-
tive circuit has been hypothesized to be more important for early
learning when executive control demands are greatest, and the sen-
sorimotor circuit is more relevant for later learning when executive
demands have decreased and motor control dominates [3,4,58,90].
There is evidence to indicate that the striatum is involved in motor
memory consolidation [31,47,97],  and some have proposed that it
is involved in the storage of learned sequences [3,4,30,42].  How-
ever, the contribution of the striatum to long-term retention is
controversial. Striatal lesions do not typically result in the inability
to perform well-learned sequences, but rather impair new learning
[98], or produce decrements in movement adaptation [80] or speed
of response [99,100]. Importantly, a recent study in macaque mon-
keys [101] showed that inactivation of the output nucleus of the
BG produced no deficits in retention of an over-learned sequence,
although it did produce slowing and decreased movement
amplitudes.

The BG have frequently been proposed to play a specific role in
implicit sequence learning [36,42,102–105]. However, some stud-
ies show that there is considerable overlap in striatal contributions
to both implicit and explicit learning [105–107]. Further, the results
of studies of implicit learning in patients with Parkinson’s disease
are inconsistent, with some studies showing deficits [98] while
others do not [99,108].

The possible contribution of the ventral striatum in motor
sequence learning is largely unexplored. There is substantial evi-
dence to support its involvement in probabilistic reward-based
learning [109]. Some have suggested that this is a more gen-
eral role of the striatum, and that its contribution to motor
learning might be in learning probabilistic or predictive asso-
ciations between a series of responses at least in part through
reward-based mechanisms [11,90,94].  However, real experimen-
tal evidence linking reward-based mechanisms to motor learning is
lacking.

A related proposal for the role of the BG in motor sequence
learning is that it associates multiple movements into groups or
chunks [90,110,111]. Chunks are subgroups of movements within
a sequence that are usually defined by shorter RTs among members
of the subgroup compared to RTs between subgroups [112]. Chunk-
ing is thought to index the development of efficient, co-articulated
movements within a sequence [90,111,113,114].  It is characteristic
of over-learned sequences, and is thought to be important for learn-
ing and maintaining longer and more complex sequences because
it confers a memory advantage [112,115].  Depletion of dopamine
in the BG of rats and monkeys results in impairments in the devel-
opment and stability of movement chunks, but does not impair
the expression of chunks in well-learned sequences [111,116,117].
Similarly, patients with Parkinson’s disease [118] and basal gan-
glia stroke [119] are impaired in chunk acquisition. Consistent
with this evidence, a recent fMRI study showed that activity in
dorsal–lateral striatum was  related to chunking in a finger sequenc-
ing task [20]. Finally, multiunit recording work in rats has shown
that as T-maze learning progresses the response of striatal output
neurons becomes tuned to the beginning and end of the sequence of
movements – indicating that corticostriatal circuits represent the
sequence as one or more chunks rather than as a series of individual
movements [120].

Integrating our own work with these proposed striatal mecha-
nisms, early learning was associated with greater activity in the
anterior striatum, with a shift to more dorsal striatum later in
learning [23]. This is consistent with relatively rapid changes in
the accuracy or stimulus response association measure and more
extended changes in the sensorimotor measure of synchronization.
Overall, our data do not support a role for the striatum in reten-
tion, as we  see increases in striatal activity both within and across
days of learning, but no incremental engagement at delayed recall
[21–23].  Taken together we  propose that the striatum is impor-
tant for developing probabilistic associations between individual
movements (e.g., motor chunks) and that these associations evolve
with practice. Further, we  hypothesize that the involvement of dif-
ferent striatial regions in sequential learning may  depend on the
degree to which reward-based, explicit control and sensorimotor
mechanisms are required.

9. What does M1  do? – representation and storage

Primary motor cortex, or M1,  is the major cortical output to
the descending motor system and generates the neural commands
that result in voluntary movement. M1  is strongly interconnected
with somatosensory, and spatial processing regions in the pari-
etal lobe, the premotor cortex and SMA, as well as both the BG
and cerebellum. M1  is organized as a motor map  with a globally



Author's personal copy

588 V.B. Penhune, C.J. Steele / Behavioural Brain Research 226 (2012) 579– 591

somatotopic organization containing multiple interdigitated repre-
sentations of muscle synergies or movement primitives [121,122].
These synergies can be represented by the coherent activity of
weighted ensembles of connected neurons, and the encoding of a
novel movement sequence in motor cortex is thought to result from
changes in this weighted connectivity when sets of movements
are consistently performed together [123]. The overall represen-
tational strength of the sequence is increased as movements are
practiced, resulting in an expansion of the cortical representa-
tion, or “map” region, corresponding to the specific sequence of
movements or skill [77,124–126]. TMS  studies in humans show
map expansion for practiced movements [127,128].  Map  plasticity
appears to occur over multiple timescales, with short-term changes
that are relatively transient and long-term changes that are more
permanent [129]. Supporting this idea, a recent neurophysiologi-
cal study of force-field adaptation in monkeys found that different
populations of neurons in M1  show fast and slow changes in coding
as the animals practiced the task over five days [130]. In contrast
to the population changes, they did not observe change in prop-
erties of single cells. Therefore, they interpreted their findings as
showing that a new motor plan is encoded by a population of
neurons, rather than changes in the properties of individual cells.
Studies of motor sequence learning in animals show that neurons
in M1  can encode also sequence-specific information [50,131,132],
consistent with human neuroimaging studies showing long-term
increases in M1  activity with extended practice [21–23,27,30,35].
Finally, recent theory suggests that motor representations are con-
stitutively plastic, a characteristic could account for the flexibility
of motor behavior and the ability to learn a large repertoire of skills
[129].

The evidence reviewed above constitutes a strong body of evi-
dence demonstrating that M1  is the likely site of storage of new
motor memories, probably as part of a distributed network includ-
ing premotor and parietal cortex. The specificity of M1 involvement
in motor memory has been demonstrated in studies where repet-
itive TMS  over M1 disrupts consolidation of a practiced motor
task [133,134].  Complementary work with facilitative transcranial
direct current stimulation (tDCS) has shown that stimulation of M1
immediately following practice enhances consolidation and long-
term retention [83,135,136]. Importantly, recent studies using tDCS
have also shown facilitative effects of PMC  stimulation on consol-
idation [137,138],  confirming its role in the distributed network
underlying motor sequence representation.

The hypothesis that motor memories are represented in M1  is
also supported by evidence of structural changes in motor cortex
related to learning. In addition to plasticity in the organization
of motor maps, studies in rats show microstructural changes in
grey and white matter [125,139].  In humans, structural MRI  studies
showing changes in grey matter and white matter with learning of a
new motor task, or in relation to well-learned skill. Using diffusion
tensor imaging (DTI), Bengtsson et al. [140] found that musicians
had greater integrity of the descending motor pathways that was
related to the number of hours they practiced in childhood. In a lon-
gitudinal study of children taking one year of piano lessons, Hyde
et al. [141] showed changes in grey matter structure in M1  that was
related to motor performance. Finally, a DTI study showed that ten
days of intensive training on a motor adaptation paradigm pro-
duced grey matter and white matter changes in the hand region of
the motor cortex [142].

10. How do the cerebellum, BG and M1  work together?

Having reviewed the individual contributions of the cerebel-
lum, striatum and M1  to motor sequence learning, the challenge
is to understand how these regions work together as learning

Fig. 6. Integrated model of motor sequence learning. The top panel of the
figure illustrates the brain regions and associated mechanisms involved in
motor sequence learning, and highlights their connectivity. Interactions between
regions/mechanisms are depicted by vertical arrows, with lesser known interac-
tions depicted by light arrows. The colour gradient within the striatum represents
the relative contribution of each learning mechanism (light = greater contribution;
dark = lesser contribution). The bottom panel depicts the idealized learning curve for
different components of performance over time. Each component is colour-coded
to  its associated brain region. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)

progresses. We  propose that sequence learning is underwritten
by parallel, interacting processes, such as error correction, inter-
nal model formation, stimulus–response association and sequence
representation, that are instantiated in specific cerebellar, striatal
or M1  mechanisms (Fig. 6). Therefore, the ensemble of regions
that are engaged at a particular phase of learning depends on task
demands that tap these specific mechanisms. This is in contrast to
stage models that try to link learning at each phase to processing in
unique regions. Our framework also contrasts with the component
model, in that separable parameters for learning are not confined
to spatial and sensorimotor, but include other parameters, such as
velocity, force, timing and coarticulation – each of which may  be
optimized over different timecourses.

In the proposed model, the function of the striatal system is to
learn probabilistic or predictive associations between stimuli and
responses and/or between individual movements in a sequence.
The role of the cerebellum is to acquire the optimal internal model
for performing a sequence of movements in a particular context.
The cerebellum also contributes to error correction and control
of on-going movement. Finally, M1  stores the representation or
“map” of a learned sequence, likely as part of a distributed network
including parietal lobe and PMC.

As described previously, connections between these regions
form separable loop systems – the cortico-striatal and cortico-
cerebellar. Throughout learning these systems contribute
simultaneously to sequence acquisition: the cortico-striatal
system to learning of the more explicit, spatial/sequential order
of movements; and the cortico-cerebellar system to correcting
and optimizing motor control parameters. The degree to which
each system is called into play depends on task demands and
phase of learning. These different mechanisms also underlie
faster and slower learning processes, where the more explicit,
spatial/sequential component is learned more quickly, and the
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more implicit, sensorimotor component is learned more slowly. If
the sequence is learnable through explicit means or has an obvious
goal state, then anterior striatal circuits and the frontal lobe would
play a greater role. If, however, the sequence is largely implicit
or has already been explicitly learned, then dorsal–striatal mech-
anisms would contribute to chunking of repeatedly performed
actions. It is also possible that ventral–striatal, reward-based
mechanisms are engaged in learning. Information from these stri-
atal learning mechanisms would be integrated in M1,  contributing
to the reweighting of the representation of repeated or learned
sequences.

Cerebellar learning mechanisms would contribute to error cor-
rection throughout the learning process and with practice new
context-specific input–output models for the sequence would be
formed. Interactions between the cerebellum and M1  appear to be
crucial for learning, likely influencing the final representation of
the sequence in M1.  This joint representation is built up through an
iterative process of integrating information about performance of
the skill based on the predicted and actual state of the effec-
tor(s) involved. Thus, while average M1  and cerebellar activity may
decrease with practice, specific increases that index encoding of
the representation of the motor plan and internal model can be
observed. The representations in M1  and the cerebellum may  be
linked to different components of learning, with the representa-
tion of the motor plan for the learned sequence of movements
encoded in M1  and the motor control parameters for these move-
ments encoded in the cerebellum. This distributed representation
of a learned sequence would also likely include the PMC  and parietal
cortex. The cerebellum is also likely to be important for encoding
the motor context of learning such as the control parameters of
specific tools or manipulanda. The last leg of the triangle, the inter-
action between the cerebellum and striatal system, is the least well
characterized. However, it follows logically that information from
striatal systems about prediction and chunking of action sequences
would be relayed to cerebellar systems engaged in movement opti-
mization and vice versa.

In sum, this framework for motor learning proposes that, as with
the athlete learning the jump-shot or a pianist learning a new piece,
there are at least two separable components of learning – spa-
tial/sequential order and optimal sensorimotor control – and that
these components are underwritten by partially separable neural
mechanisms that are optimized over different timecourses (Fig. 6,
bottom panel). However, as with the athlete and the musician,
learning of these components is necessarily intertwined. Making
easily testable predictions from a model proposing parallel inter-
acting systems can be more difficult. However, there are a number
of directions for future research that would further specify stri-
atal, cerebellar, and M1  mechanisms involved in learning and could
better define how these systems interact.

A central direction arising from our proposal would be to iden-
tify more precisely the sensorimotor parameters thought to be
represented by cerebellar internal models. This would require
experiments examining cerebellar contributions to learning-
related changes in movement parameters such as velocity, force,
timing and coarticulation. Some such experiments have been con-
ducted in animals, but relatively few have been done with humans.
A clear prediction of our model is that activity in specific M1
sub-populations should be related to recall performance of indi-
vidual sequences, with better recall resulting in greater activity.
A related prediction, based on the idea that M1–cerebellar con-
nectivity is important for learning, is that we should be able
to identify specific changes in connectivity with learning. The
hypothesis that dorsal–striatal mechanisms contribute to chunk
formation could be tested in humans by examining the relationship
between striatal activity and chunking measures during learning.
An interesting question based on the recently identified anatomical

connections between the BG and cerebellum would be to test for
striatal–cerebellar interactions specific to learning, possibly in the
context of chunk formation. Finally, a novel direction for research
would be to examine the role of ventral striatal reward-based
mechanisms in sequence learning.
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