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Quantum magnetotransport in bilayer MoS2: Influence of perpendicular electric field
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We first derive the energy dispersion of bilayer MoS2 in the presence of a perpendicular electric field Ez. We
show that the band gap and layer splitting can be controlled by the field Ez. Away from the k point, the intrinsic
spin-orbit coupling splitting increases in the conduction band but is weakly affected in the valence band. We then
analyze the band structure in the presence of a perpendicular magnetic field B and the field Ez, including spin
and valley Zeeman terms, and evaluate the Hall and longitudinal conductivities. We discuss the numerical results
as functions of the fields B and Ez for finite temperatures. The field B gives rise to a significant spin splitting
in the conduction band, to a beating in the Shubnikov–de Haas (SdH) oscillations when it is weak, and to their
splitting when it is strong. The Zeeman terms and Ez suppress the beating and change the positions of the beating
nodes of the SdH oscillations at low B fields and enhance their splitting at high B fields. Similar beating patterns
are observed in the spin and valley polarizations at low B fields. Interestingly, a 90% spin polarization and a
100% square-wave-shaped valley polarization are observed at high B fields. The Hall-plateau sequence depends
on Ez. These findings may be pertinent to future spintronic and valleytronic devices.

DOI: 10.1103/PhysRevB.96.045405

I. INTRODUCTION

Recently the MoS2 monolayer has provided a new testbed
for the study of fermion physics in reduced dimensions. Its
strong intrinsic spin-orbit coupling (SOC) and huge band
gap [1], approximately 2λ = 150 meV and 2� = 1.66 eV,
respectively, render it pertinent to potential applications in
spintronics and optoelectronics [2–5]. Due to these features,
MoS2 may be more appropriate for device applications than
graphene and the conventional two-dimensional electron gas
(2DEG). Other investigated properties of monolayer MoS2 are
magnetocapacitance [6], spin- and valley-dependent magneto-
optical spectra [7–9], and an unconventional quantum Hall
effect (QHE) [10]. Most recently, magnetotransport studies of
monolayer MoS2 have been carried out [11–13].

In addition to monolayer MoS2, it has been recently realized
that bilayer MoS2 has potential applications in optoelectronics
and spintronics. Also, a band-gap tuning is possible in a MoS2

bilayer in the presence of a perpendicular electric field Ez

[14–16]. Additional reported properties of bilayer MoS2

include magnetoelectric effects and valley-controlled spin-
quantum gates [17], tuning of the valley magnetic mo-
ment [18], and electrical control of the valley-Hall effect [19].
Moreover, a field-effect transistor has been realized exper-
imentally in a few-layer MoS2 [20]. In contrast, bilayer
graphene has intrinsically a very weak SOC [21,22] and,
when not biased, a zero band gap [23–25]. There exist
numerous theoretical and experimental [24,26–29] studies of
magnetotransport properties in bilayer graphene. Although its
band gap can be controlled by an electric field Ez [30–33],
high-quality samples of MoS2 bilayers with a strong intrinsic
SOC and a huge band gap are of particular importance.
Contrary to bilayer graphene, the MoS2 bilayer has greater
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potential for future spintronic and valleytronic applications.
Recently, not only the QHE but also the SdH oscillations
have been observed in high-quality monolayer and multilayer
MoS2 [34], but to our knowledge, neither magnetotransport nor
the effect of an electric field Ez have been theoretically studied
for bilayer MoS2. Such a study is the aim of the present work.

The paper is organized as follows. In Sec. II we formulate
the problem and discuss the band structure of bilayer MoS2

with the help of the eigenvalues, eigenfunctions, Fermi energy,
and density of states (DOS). We then evaluate the Hall and
longitudinal conductivities using the linear-response formulas
of Ref. [35]. Interestingly, we find that the Hall-plateau
sequence depends on the field Ez and becomes unconventional
when Ez is present. Also, we compare the results with those
on bilayer graphene. Concluding remarks follow in Sec. IV.

II. FORMULATION AND ELECTRONIC SPECTRUM

The one-electron Hamiltonian of bilayer MoS2 near the K

and K ′ valleys [17,18,36,37] reads

Hτ =

⎛
⎜⎜⎝

−ξ sτ
1 vF πτ

− γ 0
vF πτ

+ ξ sτ
2 0 0

γ 0 −ξ sτ
3 vF πτ

+
0 0 vF πτ

− ξ sτ
4

⎞
⎟⎟⎠. (1)

Here, τ = 1(−1) is for the K (K ′) valley, πτ
± = τπx ± iπy ,

ξ sτ
1 = κ + τsλ + sMz − τMv , ξ sτ

2 = α − sMz + τMv , ξ sτ
3 =

α − τsλ − sMz + τMv , and ξ sτ
4 = κ + sMz − τMv , with

κ = � + V and α = � − V , with � the monolayer band gap.
Further, vF = 0.53 × 106 m/s [10] is the Fermi velocity, V the
external electric field energy, λ the strength of the intrinsic SOC
with spins up (down) represented by s = +1(↑)(s = −1(↓)),
and γ the effective interlayer interaction energy. Moreover,
Mz = g′μBB/2 is the Zeeman exchange field induced by
ferromagnetic order, g′ the Landé g factor (g′ = g′

e + g′
s)
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FIG. 1. Band structure of bilayer MoS2 for λ = 0.074 eV and γ = 0.047 eV. The upper panels are for zero electric field energy (V = 0)
and the lower ones for V = 15 meV. The left (right) panels are for the K (K ′) valley and 
s = sλV/[λ2 + γ 2]1/2.

and μB the Bohr magneton [38]; g′
e = 2 is the free electron

g factor and g′
s = 0.21 the out-of-plane factor due to the

strong SOC in MoS2. The term Mv = g′
vμBB/2 breaks the

valley symmetry of the levels and g′
v = 3.57 [38]. The valley

splitting has been measured in very recent experiments [39–42]
and is theoretically shown to be approximately 30 meV by
first-principles calculations [43]. The eigenvalues Es,τ

μ (k) of
Eq. (1), when the magnetic field is absent, are

Es,τ
μ (k) = h̄vF εs,τ

μ (k). (2)

The subscript μ = (μ1,μ2) is used to denote the positive and
negative energies of the upper layer by μ1 = ±1 and of the
lower layer by μ2 = ±1. The factor εs,τ

μ (k) ≡ ε in Eq. (2) is
the solution of the fourth-degree equation

[(ε − α′)(ε + κ ′ − τsλ′) − k2]

× [(ε − κ ′)(ε + α′ + τsλ′) − k2]

− γ ′2(ε − α′)(ε − κ ′) = 0, (3)

where k ≡ ky is the wave vector, ε = E/h̄vF , λ′ = λ/h̄vF ,
κ ′ = κ/h̄vF , γ ′ = γ /h̄vF , and α′ = α/h̄vF . In the combined
limit λ′ → 0, κ ′ → 0, α′ → 0, we obtain the energy dispersion
for bilayer graphene [44].

In the upper panels of Fig. 1 we plot the energy dispersion
of bilayer MoS2 for field Ez = 0 (V = 0 meV) at both
valleys. We note the following: (i) The splitting due to the
SOC is zero in the conduction and valence bands even in
the presence of SOC [14–18,36,37]. (ii) The splitting due to
interlayer hopping is zero in the conduction band but finite in
the valence band [14–18,36,37]. Further, the splitting in the
valence band is a combined effect of interlayer coupling and
SOC given by 2[λ2 + γ 2]1/2 at k = 0. This relation indicates
that the valence band is still split for λ = 0 [36]. (iii) The
gap between conduction and valence band edges is given by
2� − [λ2 + γ 2]1/2 for k = 0 [36]. Notice that the effects of
SOC and interlayer coupling are negligible in the conduction
band near k = 0, while at large values of k the SOC effect
dominates.
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FIG. 2. Band structure of bilayer MoS2 for different electric fields Ez. The left (right) panel is for the conduction (valence) band. The curve
marking and parameters are as Fig. 1.

For a finite field Ez (V = 15 meV) we plot the energy
spectrum in the lower panels of Fig. 1. We remark the
following: (i) The SOC splitting is modified by the field Ez.
We also note that the spin splitting in the conduction band due
to the SOC is negligible for the parameters and scale used. On
the other hand, the valence band completely dictates the lifting
of the spin degeneracy. (ii) An interlayer splitting is obtained
in both the conduction and valence bands. Analytically we
obtain the gaps 2V λ/[λ2 + γ 2]1/2 for V � λ and 2V at the
valence and conduction band edges, respectively. (iii) The band
gap is also reduced by the field Ez ∝ V . It is equal to 2� −
V − [λ2 + γ 2]1/2 − τsλV/[λ2 + γ 2]1/2 for V � λ. The spin
and layer splittings increase with the field Ez [15,16,45] or
energy V , which can be seen in Fig. 2. So far we assumed
that the band edges are at the K point of the Brillouin zone,
but this may not be the case neither for the valence band
nor for the conduction band. In fact, there are arguments that
our assumption holds [3,17,18,46,47], but density functional
theory calculations and a recent angle-resolved photoemission
spectroscopy (ARPES) measurement [48] indicate that the
valence band edge is shifted to the � point.

A. Landau levels

In the presence of a magnetic field B perpendicular to
the layers, we replace π by −ih̄∇ + A in Eq. (1) and take
the vector potential A in the Landau gauge A = (0,Bx,0).
After diagonalizing Eq. (1), the Landau level (LL) spectrum is
obtained as

Es,τ
n,μ = h̄ωc εs,τ

n,μ, (4)

where ωc = vF

√
2eB/h̄ is the cyclotron frequency. The

subscript μ = (μ1,μ2) is used to denote the positive and
negative energies in the upper (μ1 = ±1) and lower (μ2 = ±1)
layers. For n � 1 the factor εs,τ

n,μ ≡ ε is the solution of the
fourth-order equation[(

ε + dsτ
1

)(
ε − dsτ

2

) − n
][(

ε + dsτ
3

)(
ε − dsτ

4

) − (n + 1)
]

− t2
(
ε − dsτ

2

)(
ε − dsτ

4

) = 0, (5)

where t = γ /h̄ωc, dsτ
1 = κτ + sλ + τ (sMz − τMv)/h̄ωc,

dsτ
2 = ατ − τ (sMz − τMv)/h̄ωc, dsτ

3 = ατ − sλ − τ (sMz −
τMv)/h̄ωc, and dsτ

4 = κτ + τ (sMz − τMv)/h̄ωc, where κτ =
� + τV and ατ = � − τV are dimensionless parameters. The
eigenfunctions are

ψs,+
n,μ = 1√

Ly

⎛
⎜⎜⎜⎝

�s,+
n,μφn

�s,+
n,μ φn−1

�s,+
n,μ φn

ϒs,+
n,μ φn+1

⎞
⎟⎟⎟⎠eikyy,

ψs,−
n,μ = 1√

Ly

⎛
⎜⎜⎜⎝

�s,−
n,μ φn

ϒs,−
n,μ φn+1

�s,−
n,μ φn

�s,−
n,μ φn−1

⎞
⎟⎟⎟⎠eikyy . (6)

The coefficients are given by �s,τ
n,μ = √

n �s,τ
n,μ/[εs,τ

n,μ − dsτ
2 ],

�s,τ
n,μ = ks,τ

n,μ�s,τ
n,μ, and ϒs,τ

n,μ = √
n + 1 ks,τ

n,μ �s,τ
n,μ/[εs,τ

n,μ − dsτ
4 ],

with �s,τ
n,μ the normalization constants

�s,τ
n,μ = {(

ks,τ
n,μ

)2[
1 + (n + 1)

/(
εs,τ
n,μ − dsτ

4

)2] + 1

+ n
/(

εs,τ
n,μ − dsτ

2

)2}−1/2
(7)

and ks,τ
n,μ = [(εs,τ

n,μ + dsτ
1 )(εs,τ

n,μ − dsτ
2 ) − n]/t(εs,τ

n,μ − dsτ
2 ).

Therefore, the wave function of bilayer MoS2 is a mixture of
Landau wave functions with indices n − 1, n, and n + 1.

In Eq. (6) the index n can take the values n = −1,0,1,......
If n or n ± 1 is negative, the function φn or φn±1 is identically
zero, i.e., φ−2 ≡ 0 and φ−1 ≡ 0. For n = −1 Eq. (6) is just
ψ

s,+
−1 = (0,0,0,φ0) and ψ

s,−
−1 = (0,φ0,0,0), i.e., �s,±

n,μ, �s,±
n,μ, and

�s,±
n,μ are equal to zero. There is only one energy level per

valley corresponding to n = −1. For n = 0, Eq. (6) has zero
coefficients �s,+

n,μ and �s,−
n,μ, which results in three energy levels

for each valley. For other values of n, i.e., for n � 1, there are
four eigenvalues of the Hamiltonian (1), corresponding to four
Landau levels in a bilayer for a given valley τ = ±1.
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FIG. 3. Energy spectrum of bilayer MoS2 versus magnetic field B for Mz,Mv �= 0, and V = 0. The left (right) panel is for the conduction
(valence) band. The magenta curve shows the Fermi energy EF versus B for an electron density ne = 1.9 × 1013 cm−2.

In addition, there are two special LLs of bilayer MoS2. For
n = −1 and n = 0, Eq. (1) takes, respectively, the forms

H+
n=−1 = ξ+

4 , H−
n=−1 = ξ−

2 , (8)

and

H+
n=0 =

⎛
⎝−ξ s+

1 γ 0
γ −ξ s+

3 h̄ωc

0 h̄ωc ξ s+
4

⎞
⎠,

H−
n=0 =

⎛
⎝−ξ s−

1 h̄ωc γ

h̄ωc ξ s−
2 0

γ 0 −ξ s−
3

⎞
⎠. (9)

The factor ε corresponding to Eq. (9) is given by the roots
of the cubic equation(

ε + dsτ
1

)[(
ε + dsτ

3

)(
ε − dsτ

4

) − 1
]

− t2
(
ε − dsτ

4

) = 0. (10)

The corresponding eigenstates take the form

ψ
s,+
0,μ = 1√

Ly

⎛
⎜⎜⎜⎝

�
s,+
0,μ φ0

0

�
s,+
0,μ φ0

ϒ
s,+
0,μ φ1

⎞
⎟⎟⎟⎠eikyy,

ψ
s,−
0,μ = 1√

Ly

⎛
⎜⎜⎜⎝

�
s,−
0,μ φ0

ϒ
s,−
0,μ φ1

�
s,−
0,μ φ0

0

⎞
⎟⎟⎟⎠eikyy . (11)

Note that Eq. (10) gives only three roots while μ provides four
labels. We reserve the labels μ = (+,+) for the fourth root
and denote by ε

s,+
−1,++ = ds+

4 the corresponding eigenvalue for
n = −1. We then write the respective LL state as ψ

s,+
−1,++ =

(0,0,0,φ0)T eikyy/
√

Ly , where T denotes the transpose of the
row vector. Further, we reserve the label μ = (+,−) for n =
−1 at the K ′ valley irrespective of the K valley, since the
corresponding eigenvalue is ε

s,−
−1,+− = ds−

2 and yields the state
ψ

s,−
−1,+− = (0,φ0,0,0)T eikyy/

√
Ly . The eigenfunctions depend

on the quantum numbers n and ky , but the eigenvalues are
independent of ky .

B. Limiting cases

(i) Setting γ = V = 0 and Mz = Mv = 0 in Eq. (4) gives
the eigenvalues of a MoS2 monolayer or two uncoupled and
unbiased layers,

ε = −sλ1 ± [
(�′ + sλ1)2 + (n + 1)

]1/2
,

(12)
ε = sλ1 ± [

(�′ − sλ1)2 + n
]1/2

,

where �′ = �/h̄ωc and λ1 = λ/h̄ωc. These results are consis-
tent with those in Refs. [11] and [12]. If we set �′ = λ1 = 0 in
Eq. (12), we obtain the well-known eigenvalues for monolayer
graphene [49]:

ε = ±√
n + 1, ε = ±√

n. (13)

(ii) For � = λ = V = Mz = Mv = 0, we obtain the LL
spectrum of bilayer graphene [23–25]:

ε = ± 1√
2

(t2 + 2(2n + 1) ± {[t2 + 2(2n + 1)]2

− 16n(n + 1)}1/2)1/2. (14)

This equation can be further simplified by expanding the
internal square root in the limit n � t2. Moreover, by taking
the negative sign, the solution is

ε = ± 2
√

n(n + 1)
/
t. (15)

This spectrum is similar to that of Refs. [23] and [25] obtained
by means of a 2 × 2 Hamiltonian. The energy of higher LLs
is obtained by taking the + sign in front of the internal square
root in Eq. (14).

In Fig. 3 we plot the spectrum given by Eq. (4) versus the
field B for V = 0 and finite spin Mz and Mv Zeeman fields.
The left panel is for the conduction band and the right one
for the valence band. The main findings are as follows: (i)
The energy spectrum grows linearly with the field B due to
the huge band gap. (ii) For B = 0 there are no LLs and the
spin splitting in the conduction band, due to SOC, is very
small [14–18,36,37], as seen in the upper panels of Fig. 1. But
for a finite field B we obtain a significant spin splitting: for
B = 30 T this is seen in the left panels of Fig. 4 and is due
to the SOC alone, expressed by the term τsλ in Eq. (1), since
we intentionally set Mz = Mv = 0. The right panels in Fig. 4
are for Mz �= Mv �= 0. Interestingly, the spin splitting energy
increases with B.
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FIG. 4. LL spectrum of bilayer MoS2 at B = 30 T and V = 0 labeled by (n,μ,s) with s the spin index s = ±1(↑↓) and μ the layer index
[see text after Eq. (4)] μ = (μ1μ2). The upper panels are for the conduction band and the lower ones are for the valence band. Further, the left
panels are for Mz = Mv = 0 and the right ones for Mz �= Mv �= 0. For simplicity we do not show the valence band levels for the second layer.

Within the same LL n = 10 in the conduction band it is
1.4 meV at B = 10 T, 2.8 meV at B = 20 T, and 4.1 meV
at B = 30 T. Further, one noteworthy feature is that the spin
splitting among adjacent smaller-index LLs is unobservable,
i.e., E

↑(↓),+
1,+− ∼= E

↓(↑),+
0,++ and E

↑(↓),−
0,+− ∼= E

↓(↑),−
1,++ , whereas it is

enhanced among the higher-index LLs due to the combined
effect of the SOC and interlayer coupling terms, in contrast
with monolayer MoS2 [12]. (iii) In the presence of the Zeeman
fields the LL energies for spin-up (-down) at the K valley are
different than those with spin-down (-up) at the K ′ valley
and lead to spin and valley polarizations, contrary to the
B = 0 case in which they are the same [14–18,36,37]. (iv)
For Mz �= 0 and Mv = 0 the spin splitting in the conduction
band (n = 10) is 1.9 meV at B = 10 T, 3.7 meV at B = 20 T,
and 5.4 meV at B = 30 T. (v) The spin splitting among
the lower- and upper-layer LLs at the K and K ′ valleys
has vanished, i.e., E

↑,+
1,+− ∼= E

↓,+
1,+− and E

↑,−
2,++ ∼= E

↓,−
2,++. This

unexpected behavior of LLs is due to the presence of the
Mv �= 0 term. We also notice that the splitting is unobservable
between other LLs, e.g., E

↑(↓),+
4,+− ∼= E

↑,+
3,++, E

↑(↓),+
8,++ ∼= E

↑(↓),−
9,+− ,

E
↑(↓),+
9,+− ∼= E

↑(↓),−
8,++ , E

↑(↓),+
14,+− ∼= E

↑(↓),+
13,++ , and E

↑(↓),−
14,+− ∼= E

↑(↓),−
13,++ .

Such a behavior of the LLs is absent in monolayer MoS2 [12].
However, the value of the spin splitting is very strong in the
valence band for both valleys. (vi) For Mz = Mv = 0, the
n = 0 level is twofold spin split and valley degenerate in
both the conduction and valence bands. For finite Zeeman
fields, though, it is spin and valley nondegenerate in both the
conduction and valence band. As for the n = −1 level, it is
spin and valley degenerate for Mz = Mv = 0, whereas it is
spin nondegenerate and valley degenerate for Mz �= Mv �= 0
in the conduction band (� ± sMz − Mv), with plus (+) sign
for the K valley and negative (−) sign for the K ′ valley;
that is, the spin splitting is the same but opposite in both
valleys. On the other hand, there is no level in the valence band
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FIG. 5. As in Fig. 3 but for V = 15 meV.

045405-5



M. ZUBAIR, M. TAHIR, P. VASILOPOULOS, AND K. SABEEH PHYSICAL REVIEW B 96, 045405 (2017)

0 10 20 30 40
8.30
8.35
8.40
8.45
8.50
8.55

B T

E
10

1
eV

0 10 20 30 40

8.25
8.30
8.35
8.40
8.45
8.50
8.55

B T

E
10

1
eV

FIG. 6. LLs in bilayer MoS2 (conduction band) vs the magnetic field B for V = 0 meV. The left panel is for Mz = Mv = 0, the right one
for Mz �= Mv �= 0. The magenta curve shows EF vs B.

for n = −1. These distinct features of the n = 0 and n = −1
levels can clearly be seen in Fig. 4. (vii) The LLs are unevenly
spaced in the conduction band but equidistant in the valence
band. This difference arises from the lack of electron-hole
symmetry in our system. This unusual behavior of the LLs
can clearly be seen in Fig. 4 for both zero and finite Zeeman
fields.

We show the LL spectrum in Fig. 5 for finite field Ez

(V = 15 meV) including the Mz and Mv terms. We deduce the
following: (i) The field Ez modifies the interlayer splitting, e.g.,
it makes it 30 meV in the conduction band. (ii) For Mz = Mv =
0 the LLs are still doubly degenerate, consisting of a spin-up
(↑) state from the K valley and a spin-down (↓) state from the
K ′ valley. Furthermore, the n = 0 LL is spin nondegenerate
but valley degenerate in the conduction band. However, its
spin and valley degeneracy are completely lifted in the valence
band. Moreover, the valley degeneracy of the n = −1 level is
lifted while its spin degeneracy in the conduction band is not.
Interestingly, the spin splitting energy between adjacent LLs
is also enhanced due to the finite field Ez. For example, for
n = 10 its value is 1.9 meV at B = 10 T, 3.7 meV at B = 20 T,
and 5.3 meV for B = 30 T. (iii) For Mz �= 0 and Mv = 0 the
spin splitting in the conduction band for n = 10 is 3.2 meV at
B = 10 T, 6.2 meV at B = 20 T, and 9.1 meV at B = 30 T.
Additionally, the spin and valley degeneracies of all LLs in the
conduction and valence bands are lifted. (iv) The energies of
the LLs for the lower and upper layers have different slopes in
B leading to level crossings. Interestingly, these crossings give
rise to additional degeneracies of the levels. From Eq. (5) with
t = 0, we obtain that these degeneracies, at specific energies

and fields, are embodied in the relation

n1 + n2 = ε2
n1

+ ε2
n2

+ εn1

(
dsτ

1 − dsτ
2

) + εn2

(
dsτ

3 − dsτ
4

)
− (

dsτ
1 dsτ

2 + dsτ
3 dsτ

4

) − 1. (16)

Here n1 and n2 indices label the LLs in the lower and upper
layers, respectively. For � = λ = Mz = Mv = 0 we obtain a
relation similar to that in unbiased bilayer graphene [23]. Also,
though not shown, for V �= 0 the LL spacing is not uniform in
the conduction band whereas it is in the valence band, and the
spectra are similar to those in Fig. 4.

The Fermi energy EF at constant electron concentration ne

is obtained from the relation

ne =
∫ ∞

−∞
D(E)f (E)dE = gs/v

D0

∑
n,τ,s,μ

f
(
Es,τ

n,μ

)
, (17)

where f (Es,τ
n,μ) = 1/{1 + exp[β(Es,τ

n,μ − EF )]}, β = 1/kBT is
the Fermi-Dirac function, D(E) the density of states, and D0 =
2πl2

B ; gs(gv) denotes the spin (valley) degeneracy.
To better appreciate the difference between zero and finite

Zeeman fields we redraw, in Fig. 6, the LL spectrum in the left
panel for Mz = Mv = 0 and in the right one for Mz �= Mv �= 0
as functions of the magnetic field B. The LLs (n � 0) are spin
nondegenerate and valley degenerate for Mz = Mv = 0, but
for Mz �= Mv �= 0 the valley degeneracy is lifted. Nevertheless,
the level for n = −1 is twofold spin and valley degenerate in
the absence of the Zeeman terms but its spin degeneracy is
lifted in their presence. The magenta solid lines in Fig. 6 show
EF versus the field B for V = 0 meV calculated numerically
from Eq. (17). For zero Zeeman terms, the small intra-LL
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FIG. 7. As in Fig. 5 but for V = 15 meV.
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FIG. 8. Fermi energy EF versus B at T = 1 K. The upper panels are for V = 0 meV and lower ones for V = 15 meV. The panels differ
only in the range of B.

jumps indicate the presence of splitting due to SOC, which
is strengthened by the interlayer coupling energy as seen in
the left panel of Fig 6. However, the lifting of the spin and
valley degeneracies due to finite Zeeman fields also give rise
to additional intra-LL small jumps in the EF curve, as can be
seen in the right panel of Fig. 6.

In Fig. 7 we replot the spectrum for Mz = Mv = 0 and
Mz �= Mv �= 0 at V = 15 meV. We can see that the n � 0
levels are spin nondegenerate and valley degenerate for Mz =
Mv = 0, whereas they are spin and valley nondegenerate for
Mz �= Mv �= 0. On the other hand, the level for n = −1 is spin
degenerate and valley nondegenerate in the absence of the
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FIG. 9. Dimensionless density of states (DOS) with Dc = gs/v/D0�
√

2π vs B for a LL width � = 0.1
√

B meV. The upper panels are for
V = 0 meV and the lower ones for V = 15 meV. The left and right panels differ only in the magnetic field range (x axis).
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Zeeman fields, while its spin and valley degeneracies are lifted
in their presence. For zero Zeeman fields (Fig. 7, left panel),
the additional intra-LL small jumps in the EF curve are due
to the spin and interlayer splittings which are modified by the
electric field Ez. However, the spin and valley nondegeneracies
in the presence of the Zeeman fields lead to additional intra-LL
small jumps in EF , as can be seen in the right panel of Fig. 7.

In Fig. 8 we show EF as a function of the magnetic field for
V = 0 meV and V = 15 meV. EF shows not only the beating
phenomenon at low fields B � 13 T, but also dictates the giant
splitting of the LLs at higher fields under the combined effect
of spin and Zeeman terms, as seen in the upper panels of Fig. 8.
In the lower panels of Fig. 8 another feature worth noticing is
the beating of the oscillations for B fields up to about 8 T with
a giant splitting of the LLs at higher fields due the field Ez and
the spin and valley Zeeman fields.

In Fig. 9 we plot the dimensionless DOS versus the field B in
the conduction band for two different values of Ez. We observe
a beating pattern at low fields B and a splitting at higher fields
in the SdH oscillations. The former and latter characteristics
are due to the splitting of the LLs by the combined effect
of the SOC, interlayer coupling, and Zeeman terms, and the
layer splitting modified by the field Ez as seen by contrasting
the curves of the upper and lower panels. One noteworthy
feature is that the Zeeman fields and layer splitting suppress
the amplitude of the beating at low B fields and enhance the
oscillation amplitude at higher B fields. At higher B fields, the
maximum SdH oscillation amplitude in the presence of
the field Ez occurs due to the LL degeneracy which arises
from the level crossings of the two layers. The interlayer
splitting and Zeeman effect change the position and number
of the beating nodes as compared to monolayer MoS2 [12].

We notice that in the conduction band the beating of the
oscillations is observed in the range 0 � B � 13 T for V = 0
meV and in the range 0 � B � 8 T for V = 15 meV. Above
these ranges the beating pattern is replaced by a split in the SdH
oscillations. The particular beating oscillation pattern occurs
when the level broadening is of the order of the cyclotron
energy h̄ωc and is replaced by the split when the SOC becomes
weak at larger fields B.

III. CONDUCTIVITIES

A. Hall conductivity

We use the linear-response theory as formulated in
Ref. [35]. If one uses the identity fζ (1 − fζ ′ )[1 − exp(β(Eζ −
Eζ ′))] = (fζ − fζ ′), with fζ the Fermi-Dirac function, the Hall
conductivity takes the simple form [12,24,49,50]

σyx = ih̄e2

LxLy

∑
ζ �=ζ

′

(fζ − fζ ′ )〈ζ |vx |ζ ′〉〈ζ ′|vy |ζ 〉
(Eζ − Eζ ′)2

, (18)

with |ζ 〉 = |n,μ,s,τ,ky〉, and 〈ζ |vx |ζ ′〉 and 〈ζ ′|vy |ζ 〉 the off-
diagonal matrix elements of the velocity operator. They are
evaluated with the help of the corresponding operators vx =
∂H/∂px and vy = ∂H/∂py, and are given in terms of the Pauli
matrices συ :

vx = τvF

(
σx 0
0 σx

)
, vy = vF

(
σy 0
0 −σy

)
. (19)

With εn,d2 ≡ εs,τ
n,μ − dsτ

2 , εn,d4 ≡ εs,τ
n,μ − dsτ

4 , and Q =
vF �s,τ

n,μ�
s ′,τ ′
n′,μ′ δs,s ′ the results are

〈ζ |vx |ζ ′〉 = τQ

[( √
n′

ε′
n,d2

+
√

n + 1ks,τ
n,μ k

s ′,τ ′
n′,μ′

εn,d4

)
δn,n′−1 +

( √
n

εn,d2

+
√

n′ + 1ks,τ
n,μ k

s ′,τ ′
n′,μ′

ε′
n,d4

)
δn,n′+1

]
, (20)

〈ζ ′|vy |ζ 〉 = τ iQ

[( √
n′

ε′
n,d2

+
√

n + 1ks,τ
n,μ k

s ′,τ ′
n′,μ′

εn,d4

)
δn,n′−1 −

( √
n

εn,d2

+
√

n′ + 1ks,τ
n,μ k

s ′,τ ′
n′,μ′

ε′
n,d4

)
δn,n′+1

]
, (21)

where μ = {μ1,μ2}. Using Eqs. (18), (20), and (21) we obtain

σyx = e2

2h

∑
s,τ,μ,μ′

∑
n

[
η

s,τ
n,μ,μ′

f s,τ
n,μ − f

s,τ
n+1,μ′(

ε
s,τ
n,μ − ε

s,τ
n+1,μ′

)2 − ς
s,τ
n,μ,μ′

f s,τ
n,μ − f

s,τ
n−1,μ′(

ε
s,τ
n,μ − ε

s,τ
n−1,μ′

)2

]
, (22)

with

η
s,τ
n,μ,μ′ = (n + 1)

(
�s,τ

n,μ�
s,τ
n+1,μ′

)2
[
ks,τ
n,μ k

s,τ
n+1,μ′

εn,d4

+ 1

εn+1,d2

]2

, (23)

ς
s,τ
n,μ,μ′ = n

(
�s,τ

n,μ�
s,τ
n−1,μ′

)2
[
ks,τ
n,μ k

s,τ
n−1,μ′

εn−1,d4

+ 1

εn,d2

]2

. (24)

The second term in Eq. (22) is valid only for n � 2, while
the first term is valid for n � 1. This is so because the sum
over n is split into two parts, one for n � 1 and one for n = 0.
Replacing n − 1 with n in the second term and combining
it with the first term, the sum over n starts at n = 1 for both
terms. The n = 0 contribution to the Hall conductivity Eq. (22)
is evaluated separately using the eigenstates (11). The result is

given by Eq. (A5) in Appendix A. Furthermore, for the n � 1
LLs occupied, at T = 0, the n = 0 LL contribution to the Hall
conductivity vanishes because all Fermi factors are equal to 1.
In the limit V = � = λ = 0, Eq. (22) reduces to similar ones
for bilayer graphene [24,25].

Figure 10 shows the Hall conductivity as a function of the
field B for V = 0 meV. We found that the height of the steps
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FIG. 10. Hall conductivity as a function of the magnetic field B for T = 1 K and V = 0 meV. The two panels differ only in the range of
B. For further clarity, the range 7.5 T–9.5 T is shown in the inset to the left panel and the range 20 T–27 T in that to the right panel.

is not constant: there are two different heights, 2 e2/h and
4 e2/h (see Fig. 10, black curve), in the absence of the spin and
valley Zeeman terms. However, additional new heights 2 e2/h,
3 e2/h, and 4 e2/h emerge in the sequence ladder in their
presence, as the red curve in Fig. 10 shows. These differences
result from vanishing spin splittings as discussed in detail
below Eq. (15). Further, the plateaus in bilayer MoS2 have
different origins than those in bilayer graphene: the former are
due to the strong SOC, whereas the latter result from strong
interlayer coupling [24,25]. A noteworthy feature of bilayer
MoS2 is that the influence of SOC and interlayer coupling
is enhanced with increasing LL index and leads to new Hall
plateaus, as is evident from both panels of Fig. 10. In contrast
to monolayer MoS2 [12], the plateaus in bilayer MoS2 occur
at higher magnetic fields.

We plot the Hall conductivity versus the field B in
Fig. 11 for electric field energy V = 15 meV. For Mz =
Mv = 0 (black curve of Fig. 11), the plateaus appear at
0,2,4,......(e2/h). It is noted that new plateaus, like the four
step size multiples of e2/h as seen in left and right panels
of Fig. 11 (black curve), emerge at higher LLs due to level
crossings caused by the layer splitting. It is important to note
that layer splitting is modified by a finite field Ez. On the other
hand, additional plateaus emerge in the presence of spin and
valley Zeeman fields, such as 0,1,2,......(e2/h). Interestingly,
by contrasting Figs. 10 and 11 we see that the Hall-plateau
sequence strongly depends on the field Ez. Furthermore, when
Ez is absent the plateaus occur at 0,4,8,12,.....(e2/h), as
depicted in Fig. 10 (black curve), whereas for a finite Ez, e.g.,

such that V = 15 meV, a new plateau sequence emerges with
a mixture of double and quadruple steps of integral multiples
of e2/h, such as 0,2,4,6,.....(e2/h) as shown in Fig. 11 (black
curve). The latter is a result of layer splitting that is modified
by the field Ez. The emergence of new steps in the Hall
conductivity is directly connected to the small jumps in the
Fermi level, as shown by the purple curves in Figs. 6 and 7.
Importantly, at higher B we find new plateaus in the Hall
conductivity due to the spin and valley Zeeman fields in the
absence and presence of the field Ez, as the insets of Figs. 10
and 11 show.

B. Collisional conductivity

We assume that the electrons are elastically scattered
by randomly distributed charged impurities. This type of
scattering is dominant at low temperatures. If there is no spin
degeneracy, the collisional conductivity is given by [35]

σxx = βe2

LxLy

∑
ζ,ζ

′
f (Eζ )[1 − f (Eζ

′ )]Wζζ
′ (xζ − xζ ′)2. (25)

Here f (Eζ ) is the Fermi-Dirac function, β = 1/kBT , kB is the
Boltzmann constant, and EF the chemical potential. Wζζ ′ is
the transition rate between the one-electron states |ζ 〉, and |ζ ′〉
and e is the electron’s charge. Conduction occurs by hopping
between spatially separated states centered at xζ and xζ ′ ,
xζ = 〈ζ |x|ζ 〉.
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FIG. 11. Hall conductivity as a function of the magnetic field for T = 1 K and V = 15 meV. The two panels differ only in the range of B

(x axis). For further clarity, the range 7.5 T–9.5 T is shown in the inset to the left panel and the range 20 T–27 T in that to the right one.
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FIG. 12. Longitudinal conductivity versus magnetic field B at T = 1 K. The upper (lower) panels are for V = 0 meV (V = 15 meV). The
left and right panels differ only in the range of B.

The rate Wζζ ′ in Eq. (25) is given by

Wζζ ′ = 2πNI

LxLyh̄

∑
q

|Uq |2|Gζζ ′(r)|2δ(Eζ − Eζ
′ )δk′

y ,ky+q,

(26)

with q2 = q2
x + q2

y and NI the impurity density. For an
impurity at the origin the screened potential is given by U (r) =
e2e−ks r/εr and its Fourier transform Uq = U0/[q2 + k2

s ]1/2

with U0 = 2πe2/ε, and ks the screening wave vector. Further,
if the impurity potential is short ranged, of the Dirac δ-function

type, one may use the approximation ks � q and obtain Uq ≈
U0/ks . Gζζ ′(r) = 〈ζ ′|eiq·r|ζ 〉 are the form factors and |ζ 〉 =
|n,μ,s,ky〉. Since the scattering by impurities is elastic and
the spectrum is independent of ky , we have n = n′ and no
LL mixing. Further, (xζ − xζ ′)2 = l4

Bq2
y . We notice that the

eigenfunction oscillates around the center of the orbit x0 =
l2
Bky and makes the changes

∑
ky

→ (Ly/2π )
∫ k0

−k0
dky,k0 =

Lx/2l2
B and

∑
q → (LxLy/4π2l2

B)
∫ 2π

0 dφ
∫ ∞

0 du. The form

factors | Gζζ ′(u)|2 can be evaluated from the matrix element.
For n′ = n,s = s ′,μ = μ′ we obtain

|Gnn(u)|2 = e−u

[[
1 + (

ks,τ
n,μ

)2]
Ln(u) + n

ε2
n,d2

Ln−1(u) + (n + 1)
(
ks,τ
n,μ

)2

ε2
n,d4

Ln+1(u)

]2

, (27)

with u = l2
Bq2/2 and Ln(u) the associated Laguerre polynomials. Inserting all form factors in Eq. (25) and evaluating the integral

over u in cylindrical coordinates gives

σxx = A
∑

n,μ,s,τ

(
�s,τ

n,μ

)4

[
(2n + 1)

[
1 + (

ks,τ
n,μ

)2]2 + (2n − 1)n2

ε4
n,d2

+ (2n + 3)(n + 1)2
(
ks,τ
n,μ

)4

ε4
n,d4

]
f

(
Es,τ

n,μ

)[
1 − f

(
Es,τ

n,μ

)]
, (28)

where A = (e2/h)(βNI |U0|2/πl2
B�k2

s and � is the level width.
Note that Eq. (28) reduces to that for bilayer graphene [24]
in the limit V = � = λ = 0. The collisional conductivity for
n = −1,0 is given in Appendix B.

The longitudinal conductivity σxx , given by Eq. (28), is
shown in Fig. 12 as a function of the field B for Ez = 0
(upper panels) and Ez finite (lower panels). In contrast to
bilayer graphene, Fig. 12 shows a beating pattern of the
SdH oscillations for B fields up to 9 T when Ez is absent

(V = 0) and for B fields up to 7 T when a finite Ez is
present (V = 15 meV). For high B fields the beating pattern
is absent and the longitudinal conductivity peaks are split.
The beating pattern is controlled by the fields Ez and B. A
typical beating pattern occurs when the LL level broadening
is of the same order as the LL separation. The SOC becomes
weak at larger B fields. Interestingly, in contrast to monolayer
MoS2 [12], the position of the nodes depends on both the
field Ez and spin and valley Zeeman terms. The results of
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FIG. 13. Spin Ps and valley Pv polarizations versus magnetic
field B at T = 1 K. The parameters are the same as in Fig. 11 for
Mz �= Mv �= 0.

the collisional conductivity are consistent with the Fermi
energy and DOS, as seen in Figs. 8 and 9. Analytically, the
beating of the SdH oscillations can be understood by making
the approximation βf (Es,τ

n,μ)[1 − f (Es,τ
n,μ)] ≈ δ(EF − Es,τ

n,μ) at
very low temperatures in Eq. (28), broadening the δ function,
and carrying out the procedure followed in Ref. [12].

The spin Ps and valley Pv polarization, which are extracted
from Eq. (28), are

Ps =
(
σ

K,↑
xx + σ

K ′,↓
xx

) − (
σ

K,↓
xx + σ

K ′,↑
xx

)
(
σ

K,↑
xx + σ

K ′,↓
xx

) + (
σ

K,↓
xx + σ

K ′,↑
xx

) (29)

and

Pv =
(
σ

K,↑
xx + σ

K,↓
xx

) − (
σ

K ′,↑
xx + σ

K ′,↓
xx

)
(
σ

K,↑
xx + σ

K,↓
xx

) + (
σ

K ′,↑
xx + σ

K ′,↓
xx

) . (30)

We plot the spin Ps (black solid curve) and Pv (red dotted
curve) polarization versus magnetic field at T = 1 K, V =
0 meV, and finite Zeeman fields in Fig. 13. As expected and
can be seen, here too we have a beating pattern at low magnetic
fields and well-resolved separation between both Ps and Pv at
higher magnetic fields. The fact is that strong magnetic fields
give rise to larger splittings of the LLs. In contrast to monolayer
MoS2 [12], we find 100% valley polarization above B > 13 T,
whereas we attain 90% spin polarization above B > 20 T.
Notice also the square-wave character of Pv above B > 13 T.
However, for Mz = Mv = 0, there is no Ps and Pv , as shown
by the blue curve.

Finally, we evaluate the magnetoresistivity ρμν us-
ing the conductivity tensor via the well-known relations
ρxx = σxx/S and ρxy = σxy/S, with S = σxxσyy − σxyσyx ≈
n2

ee
2/B2 where ne is the electron concentration. The Hall and

longitudinal resistivities are shown in Fig. 14 versus magnetic
field B for T = 1 K with field energy V = 0 meV (upper
panels) V = 15 meV (lower panels). We observe extra plateaus
in the Hall resistivity due to the SOC, layer splitting, and
spin and valley Zeeman terms. The steps between the plateaus
coincide with sharp peaks in the longitudinal resistivity. For
V = 0 meV and strong B fields, larger than 13 T, we find a
significant splitting of the Hall plateaus and the corresponding
peaks in the longitudinal resistivity due to spin and valley
Zeeman fields. On the other hand, for V = 15 meV and
B fields larger than 8 T, we find a well-resolved splitting
of the Hall plateaus and the corresponding peaks of the
longitudinal resistivity due to spin and valley Zeeman terms
and interlayer splitting. In contrast, for B fields less than 13
T (V = 0 meV) and 8 T (V = 15 meV), the longitudinal
resistivities show a beating pattern. Importantly, this pattern
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FIG. 14. Longitudinal (black) and Hall (red) resistivities versus magnetic field B at T = 1 K and finite spin and valley Zeeman fields.
The upper panels are for V = 0 meV and the lower ones for V = 15 meV. The left and right panels differ only in the range of B and
ρ0 = A−1 × 10−35.
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is similar to that in a conventional 2DEG in the presence
of the Rashba SOC [51]. Also, we note that well-resolved
plateaus occur at relatively higher B than in monolayer
MoS2 [12]. We expect that these results will be verified by
experiments.

IV. CONCLUSIONS

We studied quantum magnetotransport in bilayer MoS2 in
the presence of perpendicular electric (Ez) and magnetic (B)
fields. At B = 0 we showed that there is no spin splitting
for zero field Ez in both the conduction and valence bands,
whereas there is one for finite field Ez. Further, for Ez �= 0 we
demonstrated that the conduction band is still spin degenerate
while the spin degeneracy in the valence band is fully lifted
(see Fig. 1). We showed, though, that the layer splitting and
band gap can be controlled by the field Ez. The spin degeneracy
of the levels for Ez = 0 in the conduction band is lifted for
B �= 0 and is also enhanced linearly with B [see text after
Eq. (15)]. Furthermore, a finite field Ez leads to a significant
enhancement of the spin splitting energy in the adjacent LLs
of the conduction band. For V = 0 meV (V = 15 meV) and
B � 13 T (B � 8 T), the Fermi energy EF and DOS show
a beating pattern which is replaced by a split of the SdH
oscillations above B > 13 T (B > 8 T). Moreover, we showed
that the combined action of spin and valley Zeeman fields and
interlayer splitting allow for intra-LL transitions and lead to
new quantum Hall plateaus. The field Ez modifies the layer
splitting. As a result, steps of various heights, in multiples of
e2/h (Fig. 11), occur in the Hall conductivity.

Furthermore, for V = 0 meV (V = 15 meV) and B > 9 T
(B > 7 T) the number of peaks in the longitudinal conductivity
is doubled, whereas for fields B < 9 T (B < 7 T) a beating

pattern occurs similar to monolayer MoS2 [12] and the
conventional 2DEG [51].

Beating patterns at low B fields, and splittings at strong
B fields, also occur in the spin and valley polarizations.
It is worth emphasizing that a 100%, square-wave-shaped
valley polarization is obtained for B > 13 T and 90% spin
polarization for B > 20 T. The deep minima in the SdH
oscillations are accompanied by Fermi level jumps and the
peaks coincide with the usual singularities of the DOS. A
beating pattern and splitting of the SdH oscillations occur also
in the resistivity that can be controlled by the magnetic field
B, which enhances the spin splitting in the conduction band.
The spin and valley Zeeman fields lead to a giant splitting for
strong B fields and to a lifting of the fourfold spin and valley
degeneracies. The position of the plateaus as well as the peaks
and beating pattern are sensitive to the field Ez and to the spin
and valley Zeeman fields. The latter increase the number of
beating nodes in the longitudinal conductivity EF and DOS.
The results, which we hope will be tested by experiments,
indicate that bilayer MoS2 is a promising alternative to bilayer
graphene in the quest for gapped Dirac materials. We expect
further applications of bilayer MoS2 in the field of valleytronics
and spintronics.
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APPENDIX A: ZERO-LEVEL HALL CONDUCTIVITY

Using Eqs. (11), the off-diagonal velocity matrix elements for n = 0 are

〈0,μ,s,τ |vx |n′,μ′,s ′,τ ′〉 = τvF �
s,τ
0,μ�

s ′,τ ′
n′,μ′δs,s ′

[{ √
n′

ε′
n,d2

+ k
s,τ
0,μk

s ′,τ ′
n′,μ′

ε0,d4

}
δ0,n′−1 +

√
n′ + 1k

s,τ
0,μk

s ′,τ ′
n′,μ′

ε′
n,d4

δ0,n′+1

]
, (A1)

〈n′,μ′,s ′,τ ′|vy |0,μ,s,τ 〉 = τ ivF �
s,τ
0,μ�

s ′,τ ′
n′,μ′δs,s ′

[{ √
n′

ε′
n,d2

+ k
s,τ
0,μk

s ′,τ ′
n′,μ′

ε0,d4

}
δ0,n′−1 −

√
n′ + 1k

s,τ
0,μk

s ′,τ ′
n′,μ′

ε′
n,d4

δ0,n′+1

]
. (A2)

For n = −1 we find

〈−1|vx |n′,μ′,s ′,τ ′〉 = τvF �
s ′,τ ′
n′,μ′k

s ′,τ ′
n′,μ′δs,s ′ δ0,n′ , (A3)

〈n′,μ′,s ′,τ ′|vy | − 1〉 = τ ivF �
s ′,τ ′
n′,μ′k

s ′,τ ′
n′,μ′δs,s ′ δ0,n′ . (A4)

Using these expressions the Hall conductivity takes the form

σyx = e2

h

∑
s,τ

∑
μ,μ′

[
η

s,τ
0,1,μ,μ′

f
s,τ
0,μ − f

s,τ
1,μ′(

ε
s,τ
0,μ − ε

s,τ
1,μ′

)2 + (
�

s,τ
0,μ′k

s,τ
0,μ′

)2 f
s,τ
−1 − f

s,τ
0,μ′(

ε
s,τ
−1 − ε

s,τ
0,μ′

)2

]
, (A5)

where

η
s,τ
0,1,μ,μ′ = (

�
s,τ
0,μ�

s,τ
1,μ′

)2
[

1

ε′
1,d2

+ k
s,τ
0,μk

s,τ
1,μ′

ε0,d4

]2

. (A6)
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APPENDIX B: ZERO-LEVEL COLLISIONAL CONDUCTIVITY

The form factors for n = 0 and n = −1, with n′ = n,s = s ′, and μ = μ′, are given by

|G00(u)|2 = e−u

[[
1 + (

k
s,τ
0,μ

)2]
L0(u) +

(
k

s,τ
0,μ

)2

ε2
0,d4

L1(u)

]2

(B1)

and

|G−1−1(u)|2 = e−uL2
0(u). (B2)

The collisional conductivity is

σxx = A
∑
μ,s,τ

[(
�

s,τ
0,μ

)4

[[
1 + (

k
s,τ
0,μ

)2]2 + 3
(
k

s,τ
0,μ

)4

ε4
0,d4

]
f

(
E

s,τ
0,μ

)[
1 − f

(
E

s,τ
0,μ

)] + f
(
E

s,τ
−1

)[
1 − f (Es,τ

−1

)]]
. (B3)

[1] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.
Lett. 108, 196802 (2012).

[2] A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, J. Appl.
Phys. 101, 014507 (2007).

[3] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev.
Lett. 105, 136805 (2010).

[4] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A.
Kis, Nat. Nanotechnol. 6, 147 (2011).

[5] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G.
Galli, and F. Wang, Nano Lett. 10, 1271 (2010).

[6] X. Zhou, Y. Liu, M. Zhou, H. H. Shao, and G. H. Zhou, Appl.
Phys. Express 7, 021201 (2014).

[7] F. Rose, M. O. Goerbig, and F. Piechon, Phys. Rev. B 88, 125438
(2013).

[8] R.-L. Chu, X. Li, S. Wu, Q. Niu, W. Yao, X. Xu, and C. Zhang,
Phys. Rev. B 90, 045427 (2014).

[9] Y.-H. Ho, Y.-H. Wang, and H.-Y. Chen, Phys. Rev. B 89, 155316
(2014).

[10] X. Li, F. Zhang, and Q. Niu, Phys. Rev. Lett. 110, 066803 (2013).
[11] X. Zhou, Y. Liu, M. Zhou, D. Tang, and G. Zhou, J. Phys.:

Condens. Matter 26, 485008 (2014).
[12] M. Tahir, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 93,

035406 (2016).
[13] A. Kormányos, P. Rakyta, and G. Burkard, New J. Phys. 17,

103006 (2015).
[14] Q. Liu, L. Li, Y. Li, Z. Gao, Z. Chen, and J. Lu, J. Phys. Chem.

C 116, 21556 (2012).
[15] A. Ramasubramaniam, D. Naveh, and E. Towe, Phys. Rev. B

84, 205325 (2011).
[16] N. Zibouche, P. Philipsen, A. Kuc, and T. Heine, Phys. Rev. B

90, 125440 (2014).
[17] Z. Gong, G.-B. Liu, H. Yu, D. Xiao, X. Cui, X. Xu, and W. Yao,

Nat. Commun. 4, 15 (2013).
[18] S. Wu, J. S. Ross, G. B. Liu, G. Aivazian, A. Jones, Z. Fei, W.

Zhu, D. Xiao, W. Yao, D. Cobden, and X. Xu, Nat. Phys. 9, 149
(2013).

[19] J. Lee, K. F. Mak, and J. Shan, Nat. Nanotechnol. 11, 421
(2016).

[20] A. T. Neal, H. Liu, J. J. Gu, and P. D. Ye, ACS Nano 7, 7077
(2013).

[21] F. Guinea, New J. Phys. 12, 083063 (2010).

[22] F. Mireles and J. Schliemann, New J. Phys. 14, 093026
(2012).

[23] J. M. Pereira, Jr., F. M. Peeters, and P. Vasilopoulos, Phys. Rev.
B 76, 115419 (2007).

[24] M. Zarenia, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 85,
245426 (2012).

[25] M. Nakamura, L. Hirasawa, and K. I. Imura, Phys. Rev. B 78,
033403 (2008).

[26] K. Lee, S. Kim, M. S. Points, T. E. Beechem, T. Ohta, and E.
Tutuc, Nano Lett. 11, 3624 (2011).

[27] M. A. Hidalgo and R. Cangas, arXiv:1602.02631.
[28] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I.

Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim,
Nat. Phys. 2, 177 (2006).

[29] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei,
K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone,
Nat. Nanotechnol. 5, 722 (2010).

[30] E. McCann, Phys. Rev. B 74, 161403 (2006).
[31] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl,

M. F. Crommie, Y. R. Shen, and F. Wang, Nature (London) 459,
820 (2009).

[32] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg,
Science 313, 951 (2006).

[33] F. Xia, D. B. Farmer, Y. Lin, and P. Avouris, Nano Lett. 10, 715
(2010).

[34] X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H.
Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero,
B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low,
P. Kim, and J. Hone, Nat. Nanotechnol. 10, 534 (2015).

[35] M. Charbonneau, K. M. V. Vliet, and P. Vasilopoulos, J. Math.
Phys. 23, 318 (1982).

[36] A. M. Jones, H. Yu, J. S. Ross, P. Klement, N. J. Ghimire, J.
Yan, D. G. Mandrus, W. Yao, and X. Xu, Nat. Phys. 10, 130
(2014).

[37] S. Fang, R. K. Defo, S. N. Shirodkar, S. Lieu, G. A. Tritsaris,
and E. Kaxiras, Phys. Rev. B 92, 205108 (2015).

[38] A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard,
Phys. Rev. X 4, 011034 (2014).

[39] D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos,
V. Zólyomi, J. Park, and D. C. Ralph, Phys. Rev. Lett. 114,
037401 (2015).

045405-13

https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1063/1.2407388
https://doi.org/10.1063/1.2407388
https://doi.org/10.1063/1.2407388
https://doi.org/10.1063/1.2407388
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.7567/APEX.7.021201
https://doi.org/10.7567/APEX.7.021201
https://doi.org/10.7567/APEX.7.021201
https://doi.org/10.7567/APEX.7.021201
https://doi.org/10.1103/PhysRevB.88.125438
https://doi.org/10.1103/PhysRevB.88.125438
https://doi.org/10.1103/PhysRevB.88.125438
https://doi.org/10.1103/PhysRevB.88.125438
https://doi.org/10.1103/PhysRevB.90.045427
https://doi.org/10.1103/PhysRevB.90.045427
https://doi.org/10.1103/PhysRevB.90.045427
https://doi.org/10.1103/PhysRevB.90.045427
https://doi.org/10.1103/PhysRevB.89.155316
https://doi.org/10.1103/PhysRevB.89.155316
https://doi.org/10.1103/PhysRevB.89.155316
https://doi.org/10.1103/PhysRevB.89.155316
https://doi.org/10.1103/PhysRevLett.110.066803
https://doi.org/10.1103/PhysRevLett.110.066803
https://doi.org/10.1103/PhysRevLett.110.066803
https://doi.org/10.1103/PhysRevLett.110.066803
https://doi.org/10.1088/0953-8984/26/48/485008
https://doi.org/10.1088/0953-8984/26/48/485008
https://doi.org/10.1088/0953-8984/26/48/485008
https://doi.org/10.1088/0953-8984/26/48/485008
https://doi.org/10.1103/PhysRevB.93.035406
https://doi.org/10.1103/PhysRevB.93.035406
https://doi.org/10.1103/PhysRevB.93.035406
https://doi.org/10.1103/PhysRevB.93.035406
https://doi.org/10.1088/1367-2630/17/10/103006
https://doi.org/10.1088/1367-2630/17/10/103006
https://doi.org/10.1088/1367-2630/17/10/103006
https://doi.org/10.1088/1367-2630/17/10/103006
https://doi.org/10.1021/jp307124d
https://doi.org/10.1021/jp307124d
https://doi.org/10.1021/jp307124d
https://doi.org/10.1021/jp307124d
https://doi.org/10.1103/PhysRevB.84.205325
https://doi.org/10.1103/PhysRevB.84.205325
https://doi.org/10.1103/PhysRevB.84.205325
https://doi.org/10.1103/PhysRevB.84.205325
https://doi.org/10.1103/PhysRevB.90.125440
https://doi.org/10.1103/PhysRevB.90.125440
https://doi.org/10.1103/PhysRevB.90.125440
https://doi.org/10.1103/PhysRevB.90.125440
https://doi.org/10.1038/ncomms3053
https://doi.org/10.1038/ncomms3053
https://doi.org/10.1038/ncomms3053
https://doi.org/10.1038/ncomms3053
https://doi.org/10.1038/nphys2524
https://doi.org/10.1038/nphys2524
https://doi.org/10.1038/nphys2524
https://doi.org/10.1038/nphys2524
https://doi.org/10.1038/nnano.2015.337
https://doi.org/10.1038/nnano.2015.337
https://doi.org/10.1038/nnano.2015.337
https://doi.org/10.1038/nnano.2015.337
https://doi.org/10.1021/nn402377g
https://doi.org/10.1021/nn402377g
https://doi.org/10.1021/nn402377g
https://doi.org/10.1021/nn402377g
https://doi.org/10.1088/1367-2630/12/8/083063
https://doi.org/10.1088/1367-2630/12/8/083063
https://doi.org/10.1088/1367-2630/12/8/083063
https://doi.org/10.1088/1367-2630/12/8/083063
https://doi.org/10.1088/1367-2630/14/9/093026
https://doi.org/10.1088/1367-2630/14/9/093026
https://doi.org/10.1088/1367-2630/14/9/093026
https://doi.org/10.1088/1367-2630/14/9/093026
https://doi.org/10.1103/PhysRevB.76.115419
https://doi.org/10.1103/PhysRevB.76.115419
https://doi.org/10.1103/PhysRevB.76.115419
https://doi.org/10.1103/PhysRevB.76.115419
https://doi.org/10.1103/PhysRevB.85.245426
https://doi.org/10.1103/PhysRevB.85.245426
https://doi.org/10.1103/PhysRevB.85.245426
https://doi.org/10.1103/PhysRevB.85.245426
https://doi.org/10.1103/PhysRevB.78.033403
https://doi.org/10.1103/PhysRevB.78.033403
https://doi.org/10.1103/PhysRevB.78.033403
https://doi.org/10.1103/PhysRevB.78.033403
https://doi.org/10.1021/nl201430a
https://doi.org/10.1021/nl201430a
https://doi.org/10.1021/nl201430a
https://doi.org/10.1021/nl201430a
http://arxiv.org/abs/arXiv:1602.02631
https://doi.org/10.1038/nphys245
https://doi.org/10.1038/nphys245
https://doi.org/10.1038/nphys245
https://doi.org/10.1038/nphys245
https://doi.org/10.1038/nnano.2010.172
https://doi.org/10.1038/nnano.2010.172
https://doi.org/10.1038/nnano.2010.172
https://doi.org/10.1038/nnano.2010.172
https://doi.org/10.1103/PhysRevB.74.161403
https://doi.org/10.1103/PhysRevB.74.161403
https://doi.org/10.1103/PhysRevB.74.161403
https://doi.org/10.1103/PhysRevB.74.161403
https://doi.org/10.1038/nature08105
https://doi.org/10.1038/nature08105
https://doi.org/10.1038/nature08105
https://doi.org/10.1038/nature08105
https://doi.org/10.1126/science.1130681
https://doi.org/10.1126/science.1130681
https://doi.org/10.1126/science.1130681
https://doi.org/10.1126/science.1130681
https://doi.org/10.1021/nl9039636
https://doi.org/10.1021/nl9039636
https://doi.org/10.1021/nl9039636
https://doi.org/10.1021/nl9039636
https://doi.org/10.1038/nnano.2015.70
https://doi.org/10.1038/nnano.2015.70
https://doi.org/10.1038/nnano.2015.70
https://doi.org/10.1038/nnano.2015.70
https://doi.org/10.1063/1.525355
https://doi.org/10.1063/1.525355
https://doi.org/10.1063/1.525355
https://doi.org/10.1063/1.525355
https://doi.org/10.1038/nphys2848
https://doi.org/10.1038/nphys2848
https://doi.org/10.1038/nphys2848
https://doi.org/10.1038/nphys2848
https://doi.org/10.1103/PhysRevB.92.205108
https://doi.org/10.1103/PhysRevB.92.205108
https://doi.org/10.1103/PhysRevB.92.205108
https://doi.org/10.1103/PhysRevB.92.205108
https://doi.org/10.1103/PhysRevX.4.011034
https://doi.org/10.1103/PhysRevX.4.011034
https://doi.org/10.1103/PhysRevX.4.011034
https://doi.org/10.1103/PhysRevX.4.011034
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1103/PhysRevLett.114.037401


M. ZUBAIR, M. TAHIR, P. VASILOPOULOS, AND K. SABEEH PHYSICAL REVIEW B 96, 045405 (2017)

[40] A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis,
and A. Imamoglu, Nat. Phys. 11, 141 (2015).

[41] G. Aivazian, Z. Gong, A. M. Jones, R.-L. Chu, J. Yan, D. G.
Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Nat. Phys.
11, 148 (2015).

[42] Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D.
Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J.
Hone, Z. Li, D. Smirnov, and T. F. Heinz, Phys. Rev. Lett. 113,
266804 (2014).

[43] Y. C. Cheng, Q. Y. Zhang, and U. Schwingenschlögl, Phys. Rev.
B 89, 155429 (2014).

[44] M. Koshino and T. Ando, Phys. Rev. B 81, 195431 (2010).
[45] P. Koskinen, I. Fampiou, and A. Ramasubramaniam, Phys. Rev.

Lett. 112, 186802 (2014).

[46] T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev.
B 85, 205302 (2012).

[47] A. Kumar and P. K. Ahluwalia, Modell. Simul. Mater. Sci. Eng.
21, 065015 (2013).

[48] W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-
Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P.
Herman, P. Sutter, J. Hone, and R. M. Osgood, Jr., Phys. Rev.
Lett. 111, 106801 (2013).

[49] P. M. Krstajic and P. Vasilopoulos, Phys. Rev. B 83, 075427
(2011); 86, 115432 (2012).

[50] M. Tahir, A. Manchon, and U. Schwingenschlögl, Phys. Rev. B
90, 125438 (2014).

[51] X. F. Wang and P. Vasilopoulos, Phys. Rev. B 72, 085344 (2005);
67, 085313 (2003).

045405-14

https://doi.org/10.1038/nphys3203
https://doi.org/10.1038/nphys3203
https://doi.org/10.1038/nphys3203
https://doi.org/10.1038/nphys3203
https://doi.org/10.1038/nphys3201
https://doi.org/10.1038/nphys3201
https://doi.org/10.1038/nphys3201
https://doi.org/10.1038/nphys3201
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevB.89.155429
https://doi.org/10.1103/PhysRevB.89.155429
https://doi.org/10.1103/PhysRevB.89.155429
https://doi.org/10.1103/PhysRevB.89.155429
https://doi.org/10.1103/PhysRevB.81.195431
https://doi.org/10.1103/PhysRevB.81.195431
https://doi.org/10.1103/PhysRevB.81.195431
https://doi.org/10.1103/PhysRevB.81.195431
https://doi.org/10.1103/PhysRevLett.112.186802
https://doi.org/10.1103/PhysRevLett.112.186802
https://doi.org/10.1103/PhysRevLett.112.186802
https://doi.org/10.1103/PhysRevLett.112.186802
https://doi.org/10.1103/PhysRevB.85.205302
https://doi.org/10.1103/PhysRevB.85.205302
https://doi.org/10.1103/PhysRevB.85.205302
https://doi.org/10.1103/PhysRevB.85.205302
https://doi.org/10.1088/0965-0393/21/6/065015
https://doi.org/10.1088/0965-0393/21/6/065015
https://doi.org/10.1088/0965-0393/21/6/065015
https://doi.org/10.1088/0965-0393/21/6/065015
https://doi.org/10.1103/PhysRevLett.111.106801
https://doi.org/10.1103/PhysRevLett.111.106801
https://doi.org/10.1103/PhysRevLett.111.106801
https://doi.org/10.1103/PhysRevLett.111.106801
https://doi.org/10.1103/PhysRevB.83.075427
https://doi.org/10.1103/PhysRevB.83.075427
https://doi.org/10.1103/PhysRevB.83.075427
https://doi.org/10.1103/PhysRevB.83.075427
https://doi.org/10.1103/PhysRevB.86.115432
https://doi.org/10.1103/PhysRevB.86.115432
https://doi.org/10.1103/PhysRevB.86.115432
https://doi.org/10.1103/PhysRevB.90.125438
https://doi.org/10.1103/PhysRevB.90.125438
https://doi.org/10.1103/PhysRevB.90.125438
https://doi.org/10.1103/PhysRevB.90.125438
https://doi.org/10.1103/PhysRevB.72.085344
https://doi.org/10.1103/PhysRevB.72.085344
https://doi.org/10.1103/PhysRevB.72.085344
https://doi.org/10.1103/PhysRevB.72.085344
https://doi.org/10.1103/PhysRevB.67.085313
https://doi.org/10.1103/PhysRevB.67.085313
https://doi.org/10.1103/PhysRevB.67.085313



