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Landau levels in biased graphene structures with monolayer-bilayer interfaces

M. Mirzakhani,1,2,* M. Zarenia,1,† P. Vasilopoulos,3,‡ S. A. Ketabi,2,§ and F. M. Peeters1,‖
1Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

2School of Physics, Damghan University, P.O. Box 36716-41167, Damghan, Iran
3Department of Physics, Concordia University, 7141 Sherbrooke West, Montreal, Quebec, Canada H4B 1R6

(Received 9 May 2017; revised manuscript received 25 July 2017; published 21 September 2017)

The electron energy spectrum in monolayer-bilayer-monolayer and in bilayer-monolayer-bilayer graphene
structures is investigated and the effects of a perpendicular magnetic field and electric bias are studied. Different
types of monolayer-bilayer interfaces are considered as zigzag (ZZ) or armchair (AC) junctions which modify
considerably the bulk Landau levels (LLs) when the spectra are plotted as a function of the center coordinate of
the cyclotron orbit. Far away from the two interfaces, one obtains the well-known LLs for extended monolayer
or bilayer graphene. The LL structure changes significantly at the two interfaces or junctions where the valley
degeneracy is lifted for both types of junctions, especially when the distance between them is approximately equal
to the magnetic length. Varying the nonuniform bias and the width of this junction-to-junction region in either
structure strongly influence the resulting spectra. Significant differences exist between ZZ and AC junctions in
both structures. The densities of states (DOSs) for unbiased structures are symmetric in energy whereas those
for biased structures are asymmetric. An external bias creates interface LLs in the gaps between the LLs of the
unbiased system in which the DOS can be quite small. Such a pattern of LLs can be probed by scanning tunneling
microscopy.
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I. INTRODUCTION

A family of two-dimensional (2D) graphene systems,
consisting of one or a few layers of monolayer graphene
(MLG), has attracted considerable attention during the last
years because of their unique electronic properties that may
be important for nanoelectronics applications [1–5]. MLG
as well as bilayer graphene (BLG) has been prepared by
several techniques, including precipitation on a silicon carbide
surface [6,7], mechanical exfoliation from graphite [1,2], and
growth by chemical vapor deposition (CVD) on catalytic metal
surfaces [8–10].

Topographic images reveal that most multilayer samples
exfoliated from graphite often contain atomic steps and islands
of one or few layers of graphene [11–13]. Junctions between
regions of different numbers of graphene layers can result in
interesting properties. For instance, an unconventional Landau
quantization was recently observed at the interface of such
hybrid systems [14,15]. The transmission probability through
a single MLG-BLG junction was calculated in the absence of a
magnetic field [16], while in its presence the energy spectrum
and local density of states of a semi-infinite MLG-BLG
junction were studied in Ref. [17]. Transport properties of
BLG with locally decoupled graphene sheets have also been
investigated theoretically [18]. Another study was devoted to
a hybrid quantum dot (QD) structure made of MLG-BLG
junctions [19].

Motivated by the studies of Refs. [16] and [19], we
investigate composite structures in which a narrow BLG ribbon
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is sandwiched between MLG regions (Fig. 1) or a narrow
MLG ribbon is sandwiched between BLG regions (Fig. 8).
We consider double MLG-BLG junctions and investigate the
effect of a perpendicular magnetic field and electric bias that
was not included in Ref. [17]. Results for two types of junctions
in either ribbon, with zigzag (ZZ) or armchair (AC) edges, are
contrasted with each other. Unidirectional motion of interface
states is predicted for such junctions.

Solving the Dirac-Weyl equation, we apply the appropriate
boundary conditions at the junctions and obtain analytical
results for the energy levels and corresponding wave functions.
Our results show that the energy spectrum depends on the
width of the MLG or BLG ribbons, the type of junctions, the
size of the electric bias, and the strength of the magnetic field.
The K and K ′ valleys are studied separately because of the
lack of inversion and time-reversal symmetries brought by the
interfaces and the magnetic field, respectively.

The paper is organized as follows. In Sec. II we consider
a MLG-BLG-MLG structure with ZZ and AC junctions and
present analytical and numerical results. In Sec. III we do
the same for a BLG-MLG-BLG structure, and in Sec. IV we
present the corresponding densities of states. Our conclusions
follow in Sec. V.

II. MLG-BLG-MLG STRUCTURE

We consider a BLG nanoribbon sandwiched between MLG
regions, as shown in Fig. 1. This structure can be regarded as an
infinite MLG sheet on which a second MLG ribbon is sitting on
top of the first, thus realizing a BLG ribbon in the AB (Bernal)
stacking configuration. For simplicity, we consider the ribbon
to be infinite along the y direction so that ky remains a good
quantum number due to the translational symmetry along the
y direction.

To the left and right of the BLG ribbon and in the presence
of a perpendicular magnetic field B = Bêz, the dynamics of
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FIG. 1. Schematics of a MLG-BLG-MLG structure with (a) ZZ
and (b) AC junctions. The BLG ribbon’s width W (yellow region)
is W = N

√
3a0/4 in the ZZ case, with a0 = 0.246 nm the lattice

constant and N the number of atoms of the terminated layer in the
black dashed box. In the AC case we have W = na0, with n the
number of lattice constants between the boundaries, i.e., the vertical
green lines. The upper pictures show a side view of the systems.

the carriers in MLG, in the K valley, is described by the
Hamiltonian [20–22]

HK =
(

U1 vF π−
vF π+ U1

)
, (1)

where vF ≈ 106 m/s is the Fermi velocity, π± = πx ± iπy

with π = −ih̄∇ + eA the momentum operator, A = (0,Bx,0)
is the vector potential in the Landau gauge, and U1 the potential
applied to MLG. The Hamiltonian at the K ′ valley is obtained
by interchanging π+ with π− in Eq. (1).

At the K valley, the two-component envelope function
�K (r) satisfies the Schrödinger equation

HK�K (r) = E�K (r), (2)

with

�K (r) =
(

ψK
A (x)

ψK
B (x)

)
eikyy, (3)

and ψK
A and ψK

B are the envelope functions on the sublattices
A and B, respectively. After some algebra we obtain

vF π+ = iE0b
†, vF π− = −iE0b, (4)

where E0 = √
2h̄vF / lB and lB = √

h̄/eB is the magnetic
length. Here, we have introduced the raising and lowering
operators

b† = −∂/∂z + z/2, b = ∂/∂z + z/2, (5)

where the dimensionless coordinate z is defined by

z =
√

2(x − xc)/lB, (6)

and xc = −kyl
2
B is the center of the cyclotron orbit.

The Schrödinger equation for the spinor components of the
envelope function (3) becomes the coupled set of equations

−ibψK
B (z) = ε1ψ

K
A (z), ib†ψK

A (z) = ε1ψ
K
B (z), (7)

where ε1 = ε − u1, ε = E/E0, and u1 = U1/E0. Decou-
pling the above equations leads to the Weber differential

equation [23]

(ν − b†b) ψK
B =

(
∂2

∂z2
+ ν + 1

2
− z2

4

)
ψK

B (z) = 0, (8)

with

ν = (ε − u1)2. (9)

The two independent solutions of Eq. (8) are the parabolic
cylinder functions Dν(z) and D−ν−1(iz). The solution Dν(z)
converges to zero in the limit z → ∞, while D−ν−1(iz)
diverges in both limits z → ±∞. On the other hand, Dν(−z)
with the relation

Dν(−z) = eiνπDν(z) +
√

2π

�(−ν)
ei(ν+1)π/2D−ν−1(iz) (10)

can also be chosen as an independent solution when ν �=
0,1,2 . . ., which vanishes in the limit z → −∞. Therefore,
we take Dν(−z) in the region x < 0 and Dν(z) in the region
x > W as the solution for ψK

B (z). The component ψK
A (z) can

be obtained from Eq. (7) with the help of the relations

b†Dν(z) = sgn(z)Dν+1(z),

bDν(z) = sgn(z)νDν−1(z), (11)

where sgn(z) is the sign function. The wave functions for the
left (L) and right (R) MLG regions become(

ψK
A (x)

ψK
B (x)

)
L

= CL

(
iε1Dν−1(−z)

Dν(−z)

)
, (12)

(
ψK

A (x)

ψK
B (x)

)
R

= CR

(
−iε1Dν−1(z)

Dν(z)

)
, (13)

respectively, with CL and CR the normalization constants.
To obtain the Landau level (LL) energies of bulk MLG, the

wave functions must vanish at x → ±∞, which is satisfied
by choosing ν to be a positive integer, i.e., ν(ε) = 0,1,2, . . ..
Then from Eq. (9) we get [17,24]

E± = ±E0
√

n + U1, (14)

with n = 0,1,2, . . . for the LLs of bulk MLG. The + and −
signs indicate the conduction and valence bands, respectively.
It should be mentioned that the LL energies of bulk MLG
are independent of the valleys K and K ′, that is, we have a
twofold valley degeneracy. Then the LL spectrum is fourfold
degenerate if we take into account the twofold spin degeneracy.

The BLG region is described in terms of four sublattices,
A1, B1 for the lower layer and A2, B2 for the upper layer.
We only consider the coupling between two atoms stacked
on top of each other, e.g., B1 and A2, and ignore the small
contributions of the other interlayer couplings. In the vicinity
of the K valley, the effective Hamiltonian is [25,26]

HK =

⎛
⎜⎝

U1 υπ− 0 0
υπ+ U1 γ1 0

0 γ1 U2 υπ−
0 0 υπ+ U2

⎞
⎟⎠, (15)

where γ1 ≈ 400 meV is the nearest-neighbor interlayer hop-
ping term, and U1 and U2 are the potentials at the two
layers. For the K ′ point the Hamiltonian can be obtained by
interchanging π+ and π− in Eq. (15).
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Solving Eq. (2) for the four-component envelope function
�K (r) = (ψK

A1,ψ
K
B1,ψ

K
A2,ψ

K
B2)T eikyy and using the relations

b†D−ν(iz) = iνD−ν−1(iz),

bD−ν(iz) = −iD−ν+1(iz), (16)

we obtain⎛
⎜⎜⎜⎝

ψK
A1

ψK
B1

ψK
A2

ψK
B2

⎞
⎟⎟⎟⎠ =

∑
μ=±

C1μ

⎛
⎜⎜⎜⎝

−(η/ε1)D−νμ
(iz)

ηD−νμ−1(iz)

ε2D−νμ−1(iz)

−(νμ + 1)D−νμ−2(iz)

⎞
⎟⎟⎟⎠

+ C2μ

⎛
⎜⎜⎜⎝

−iζDνμ−1(z)

ηDνμ
(z)

ε2Dνμ
(z)

iDνμ+1(z)

⎞
⎟⎟⎟⎠, (17)

where η = γ̃1ε1ε2/(ε2
1 − νμ), ζ = (νμη/ε1), γ̃1 = γ1/E0, and

ε1,2 = ε − u1,2, in which u1,2 = U1,2/E0, and

νμ = 1
2

(
ε2
+ − 1 + μ

[
ε2
−(ε2

− + 2) + 4γ̃1
2ε1ε2 + 1

]1/2 )
. (18)

C1μ and C2μ are normalization constants and ε2
± = ε2

1 ± ε2
2.

The condition of vanishing wave function at x → ±∞
gives the LL energies of bulk BLG. This is only satisfied
for Dν(z) with integer ν � 0. Therefore, the allowed values
for the indices are ν+(ε) = 0,1,2, . . . and ν−(ε) = −1,0,1, . . .

independent of the valleys. Although for ν− = −1,0 and
ν+ = 0 one can include Dν(z) with negative indices, the
corresponding coefficients are zero. In an unbiased system,
i.e., for U1 = U2 = 0, there are two zero-energy states with
indices ν+ = 0 and ν− = −1 [17,26]. Thus, the LL spectrum
of BLG is fourfold degenerate (valley and spin degeneracy)
except for the zero-energy LLs which are eightfold degenerate.

A. Zigzag junctions

As illustrated in Fig. 1(a), for the ZZ junctions of a
MLG-BLG-MLG structure, it is not possible to have the
same edge interface at both sides, and therefore, it always
includes a pair of different ZZ boundaries, ZZ1 and ZZ2. At
the ZZ1 boundary [x = W in Fig. 1(a)], the outermost atoms
are from the A2 sublattice, which is directly coupled to B1
via γ1, while at the ZZ2 boundary [x = 0 in Fig. 1(a)] the
outermost atoms are B2. The wave functions corresponding
to the sublattices in the lower layer are continuous at the
boundaries, while the ZZ boundary condition implies that
the wave spinors corresponding to the terminated atoms in
the upper layer become zero [16]. Accordingly, at x = 0, the
boundary conditions for ZZ2 are

ψv
A1(z1) = ψv

A(z1)L,

ψv
B1(z1) = ψv

B(z1)L, (19)

ψv
A2(z1,y) = 0,

where v = K or K ′ and z1 = −√
2xc/ lB . At x = W we have

ψv
A1(z2) = ψv

A(z2)R,

ψv
B1(z2) = ψv

B(z2)R, (20)

ψv
B2(z2) = 0,

for the ZZ1 boundary with z2 = √
2(W − xc)/lB . The condi-

tions (19) and (20) lead to a system of equations from which
we obtain the eigenvalues by setting the determinant of the
coefficients equal to zero. Then using Eqs. (12), (13), and (17)
leads for the K valley to

MK
ZZ(CL,CR,C1+,C1−,C2+,C2−)T = 0, (21)

where T denotes the transpose of the row vector and

MK
ZZ =

⎛
⎜⎜⎜⎜⎜⎝

−ε1Dν−1(−z1) 0 i(η/ε1)D−ν+(iz1) i(η/ε1)D−ν−(iz1) −ζDν+−1(z1) −ζDν−−1(z1)
−Dν(−z1) 0 ηD−ν+−1(iz1) ηD−ν−−1(iz1) ηDν+(z1) ηDν−(z1)

0 0 ε2D−ν+−1(iz1) ε2D−ν−−1(iz1) ε2Dν+(z1) ε2Dν−(z1)
0 ε1Dν−1(z2) i(η/ε1)D−ν+(iz2) i(η/ε1)D−ν−(iz2) −ζDν+−1(z2) −ζDν−−1(z2)
0 −Dν(z2) ηD−ν+−1(iz2) ηD−ν−−1(iz2) ηDν+(z2) ηDν−(z2)
0 0 i(ν+ + 1)D−ν+−2(iz2) i(ν− + 1)D−ν−−2(iz2) Dν++1(z2) Dν−+1(z2)

⎞
⎟⎟⎟⎟⎟⎠.

(22)

A similar matrix, MK ′
ZZ, is obtained for the K ′ valley. The

eigenvalues are obtained from the conditions det |MK
ZZ| = 0

and det |MK ′
ZZ| = 0.

The zero-energy states can be obtained separately by
solving the Schrödinger equation HK�K (r) = 0 for U1 =
U2 = 0 in the MLG and BLG regions. The details of the
derivation for the zero energies of a MLG-BLG junction were
discussed in Refs. [16] and [17]. These zero-energy levels
are due to edge states and to the zeroth LLs in bulk MLG
or BLG LLs. The results are summarized in Table I, which
shows the degeneracy of the zero-energy levels in the MLG
and BLG regions for each boundary. We used the notation
+n to indicate the additional degeneracy of these levels due
to edge states. For the K (K ′) valley, due to the ZZ2 edge,
the additional zero energy appears on the left MLG side in

the limit x → −∞, (BLG and the right MLG side when
x → +∞), and on the other hand, the edge of ZZ1 causes
another zero-energy state in BLG and on the left MLG side
in the limit x → −∞ (in the right MLG side for x → +∞).
Therefore, as shown in Table I, the MLG regions contain a
total of 2 + 2 zero-energy states in the limits of x → ±∞,
two of which are bulk MLG LLs and +2 edge states due to the
ZZ1 and ZZ2 edges. For a wide BLG ribbon there are 4 + 2
zero-energy states, containing four bulk BLG LLs and +2
edge states due to the ZZ1 and ZZ2 edges (the spin degrees are
neglected).

It is interesting to note the difference between the present
interface states in MLG-BLG heterostructures and the snake
states arising at the p-n junction in the presence of a
perpendicular magnetic field [27]. In the latter the particle
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TABLE I. Number of zero-energy LLs in each part of the
MLG-BLG-MLG system for ZZ (upper panel) and AC (lower
panel) junctions in the limits xc = ±∞, and in the assumption of
a wide-width BLG region in which the energy states inside converge
to the BLG LLs. The zero-energy edge states are indicated by +n.

ZZ2 ZZ1
xc MLG (−∞) BLG MLG (+∞)
K 1 + 2 2+1 1
K ′ 1 2+1 1 + 2

AC AC
xc MLG (−∞) BLG MLG (+∞)
K 1 2 1
K ′ 1 2 1

transits from an electron into a hole and vice versa when
crossing the p-n junction.

Figures 2(a)–2(c) show the energy levels of an unbiased
structure (U1 = U2 = 0) for B = 10 T as a function of xc

for three different BLG widths, (a) W1 = 71.58 nm, (b)
W2 = 47.72 nm, and (c) W3 = 11.93 nm, in the case of ZZ
boundaries for electrons in the K (blue solid curves) and K ′
(red dashed curves) valleys. The energy levels merge into the
Landau levels of bulk MLG in the limits xc → ±∞ for both
valleys. In a wide BLG ribbon, such as that of Fig. 2(a), we
have W1 (71.58 nm) 	 lB (= 8.10 nm) and the energy levels
inside the BLG ribbon approach the LLs of bulk BLG for low
energies. The horizontal gray lines inside the yellow region
[obtained from Eq. (18)] show the LLs of bulk BLG. Near
the junctions, breaking of the inversion symmetry due to the
interface removes the degeneracy of the K and K ′ valleys.
Because of the different ZZ1 and ZZ2 boundary conditions
at the left and right junctions, the spectrum is asymmetric
with respect to the center of the BLG ribbon. The plateaulike
and oscillatory features that appear in the spectrum near the
interfaces can be understood as the hybridization of energy
levels of the terminated system, semi-infinite MLG and BLG.

Decreasing the width of the BLG ribbon [see Figs. 2(b)
and 2(c)] prevents the energy levels inside the ribbon from

v 
(v

) F

w1 w3

4 0 4 8

(a) (b)

FIG. 3. Electron velocity along the interfaces as a function of
xc/ lB , for the two lowest electron states of the spectrum shown in
(a) Fig. 2(a) and (b) Fig. 2(c) at the K (solid curves) and K ′ (dashed
curves) valleys. The blue and red curves are for the first and second
energy states, respectively.

converging to the BLG LLs due to the overlap of the wave func-
tions of the edges. When the width of the ribbon is comparable
with the magnetic length lB , e.g., W3 = 11.93 nm ≈ lB = 8.10
nm, the value of the energy levels inside the ribbon increase
in comparison with those of wide ribbons, and the levels
show a more oscillatorylike behavior through the ribbon [see
Fig. 2(c)]. It should be mentioned that the electron-hole
symmetry is preserved for both valleys because all matrix
elements in MK

ZZ [Eq. (22)] and MK ′
ZZ are independent of the

sign of the energy ε when U1 = U2 = 0. For the K (K ′) valley,
as Fig. 2(a) shows, the nth[(n + 1)th] MLG LLs connect to the
nth BLG LLs at x = 0 with a ZZ2 boundary, and at x = W1

with a ZZ1 boundary, the nth BLG LLs approach the (n + 1)th
(nth) LLs of MLG. This indicates that due to the presence of
the ribbon, the nth [(n + 1)th] LLs of the left MLG finally
connect to the (n + 1)th (nth) LLs of the right MLG for the K

(K ′) valley.
Figures 3(a) and 3(b) show the y component of the carrier

velocity, in units of vF , for the first two states of the spectrum in
Figs. 2(a) and 2(c), respectively. The solid (dashed) curves are
for the K (K ′) valley. Electrons localized near the interface

E
 (m

eV
)

K’ K

W1

K’ K
BLG LLs

K’ K

x lc B/

Zigzag

(a) (b) (c)

W2 W3

x lc B/ x lc B/

FIG. 2. Energy spectrum of an unbiased MLG-BLG-MLG structure (U1 = U2 = 0) versus xc/ lB = −kylB , with ZZ junctions in a magnetic
field B = 10 T, for three different widths of the BLG ribbon (yellow region): (a) W1 = 71.58 nm, (b) W2 = 47.72 nm, and (c) W3 = 11.93 nm.
Blue solid (red dashed) curves refer to the K (K ′) valley.
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(a) (b)

(2)

(1)

(1’)
(2’)

FIG. 4. Energy spectrum of a biased MLG-BLG-MLG structure
(U1 = −U2 = −50 meV) as a function of xc/ lB , with ZZ boundaries
in the presence of a perpendicular magnetic field B = 10 T, for
BLG ribbon width (yellow region) (a) W2 = 47.72 nm and (b)
W3 = 11.93 nm. Blue solid (red dashed) curves display the energy
spectrum at the K (K ′) valley. Degenerate LLs of MLG are shown
by green solid lines, and gray solid (dashed) lines indicate the LLs of
biased BLG for the K (K ′) valley.

propagate along the edges of the BLG ribbon and move in
opposite directions at the right and left interfaces. For the first
K- (K ′-) energy state that merges into the zero-energy level
in MLG, the electrons move only near the right (left) edge.
As the width of the BLG ribbon becomes narrower, due to the
overlap of the edge states, the electrons have nonzero velocity
when located inside the ribbon.

Results for the spectrum of a biased structure, U1 = −U2 =
−50 meV, are plotted in Fig. 4 for a BLG ribbon of width (a)
W2 = 47.72 nm and (b) W3 = 11.93 nm. As can be seen, the
electron-hole symmetry is broken due to the broken inversion
symmetry induced by the external gate potential. As expected,
the energy levels approach the biased MLG LLs [green solid
lines obtained from Eq. (14)] in the limits xc → ±∞ for
both valleys. For a wide BLG ribbon, e.g., W2, the energy
levels approach the biased BLG LLs at low energies which
are nondegenerate [28] for the valleys K (gray solid lines)
and K ′ (gray dashed lines). The LLs of biased BLG for the
K valley can be obtained from Eq. (18). At high energies, as
well as in the case of narrow ribbons, e.g., W3, the energy
levels show an oscillatory behavior and coincide no longer
with the biased BLG LLs. Furthermore, the point surrounded
by the black rectangular box in Fig. 4(a) is an anticrossing

point that disappears upon decreasing the BLG ribbon width,
as is obvious from Fig. 4(b). The levels indicating the energy
points labeled by (1), (2) and (1′), (2′) in Fig. 4(a) are the edge
states at the K and K ′ valleys, respectively. These states have
a chiral character localized at the MLG-BLG interfaces.

Figure 5 shows the probability densities for each sublattice,
|ψi |2 (i = A,B, . . .), corresponding to the points labeled (1),
(2), (1′), and (2′) in the energy spectrum of Fig. 4. The solid and
dashed curves show the probability density for layers 1 and 2,
respectively, and their continuity at the boundaries obviously
results from that of the wave functions. The points (1) and (1′),
which belong to the K and K ′ valleys, respectively, indicate a
strong confinement at the ZZ1 boundary while points (2) and
(2′) indicate a confinement mostly at the ZZ2 boundary. On
the other hand, the edge states at the boundaries ZZ1 and ZZ2
are mostly concentrated at the A2 and B2 sites, respectively.

B. Armchair junctions

We consider AC boundaries as shown in Fig. 1(b). Although
two types of AC boundaries exist, the boundary conditions are
the same at both interfaces [16], namely,

ψv
A1(z) = ψv

A(z),

ψv
B1(z) = ψv

B(z),

ψK
A2(z) − ψK ′

A2(z) = 0,

ψK
B2(z) + ψK ′

B2(z) = 0, (23)

where z is given by Eq. (6). The last two equations indicate that
intervalley mixing occurs at the AC boundary. Applying the
conditions (23) at x = 0 and x = W leads to the determinant
det |MAC | = 0 of a 12 × 12MAC matrix. As indicated in
Table I, there is no edge state in the AC junction, and
each region contains only its own bulk zero LLs, i.e., two
zero-energy states for the MLG regions and four for the wide
BLG ribbon.

The energy levels as a function of xc are shown in Fig. 6
for an unbiased structure and three different widths of the
BLG ribbon: (a) W1 = 71.34 nm, (b) W2 = 48.22 nm, and
(c) W3 = 12.30 nm in a field B = 10 T. Applying the same
boundary condition at x = 0 and x = W renders the spectrum
symmetric. In the limits xc → ±∞ the energy levels approach
the doubly degenerate bulk MLG LLs. With their degeneracy
lifted near the junctions, the levels merge into the BLG LLs
inside the wide BLG ribbon [see Fig. 6(a)]. Decreasing the
width of the ribbon removes the degeneracy of the levels inside

0

1

0

1

0

1

0

1

2

−2 0 2 4 6 8
x / lB

−2 0 2 4 6 8
x / lB

Layer 1
Layer 2

A —
B —

−2 0 2 4 6 8
x / lB

−2 0 2 4 6 8
x / lB

(1) (2’))’1()2(

FIG. 5. Probability densities for each sublattice corresponding to the points (1), (2), (1′), and (2′) shown in the energy spectrum of Fig. 4(a).
The solid and dashed curves are for sites in layers 1 and 2, respectively, and the blue (red) color for sublattice A (B).
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FIG. 6. Energy spectrum of an unbiased MLG-BLG-MLG structure (U1 = U2 = 0) versus xc/ lB with AC junctions in a magnetic field
B = 10 T for three different widths of the BLG ribbon (yellow region): (a) W1 = 71.34 nm, (b) W2 = 48.22 nm, and (c) W3 = 12.30 nm. The
gray solid lines are the BLG LLs.

it and opens a gap between the zero-energy and the first excited
state [Fig. 6(c)]. The electron-hole symmetry is also preserved
for the AC boundary.

Figure 7 shows the energy levels of a biased MLG-BLG-
MLG structure (U1 = −U2 = −50 meV) with AC junctions.
The width of the BLG ribbon is (a) W2 = 48.22 nm and (b)
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FIG. 7. (Upper panels) Energy levels of a biased MLG-BLG-
MLG structure (U1 = −U2 = −50 meV), as a function of xc/ lB ,
with AC boundaries in a magnetic field B = 10 T. The width of the
BLG ribbon is (a) W2 = 48.22 nm and (b) W3 = 12.30 nm. The green
lines show the degenerate MLG LLs, and the gray solid (dashed) ones
are the K (K ′)-valley LLs of BLG. The lower panels show the spinors
of each sublattice corresponding to points (1)–(3) in panel (a).

W3 = 12.30 nm, and the applied magnetic field is B = 10 T.
The external gate potential breaks the inversion symmetry and
results in the electron-hole asymmetry seen in Fig. 7. The
spectrum in Fig. 7(a) shows two intermediate chiral states,
i.e., localized at the left and right interfaces (see lower panels),
connecting the first hole LL of MLG to the first electron LL
in BLG. For a small width of BLG ribbon [Fig. 7(b)], these
interface states overlap and prevent carriers to be confined
inside the BLG ribbon. Similar to the ZZ boundary, the energy
levels converge to the biased MLG LLs, Eq. (14), in the limits
xc → ±∞. At low energies, as is evident from Fig. 7(a),
the energy levels merge into the biased BLG LLs, which are
nondegenerate for the K (gray solid lines) and K ′ (gray dashed
lines) valleys inside the BLG ribbon. The wave functions
corresponding to the K-valley energy states (1)–(3) in the
spectrum of Fig. 7(a) are shown in the lower panels of Fig. 7.
As expected, states (1) and (2) show carrier localization on
the left and right interfaces, respectively, and the lowest spinor
amplitude belongs to the A2 sublattice, which is a dimer site
subjected to the potential U2 = 50 meV. On the other hand, the
state (3), belonging to the lowest biased BLG LL, is confined
inside the BLG (yellow) ribbon and is mostly concentrated on
the B2 sublattice. Notice that the spinors corresponding to the
LLs are symmetric.

III. BLG-MLG-BLG STRUCTURE

Below, we consider a narrow MLG ribbon sandwiched by
AB-stacked BLG regions, which, as shown in Fig. 8, is the
inverse of the situation investigated in Sec. II. This structure
can be regarded as an infinite BLG sheet in which a ribbon of
width W is cut out from its upper layer, thus creating the MLG
ribbon. The physical assumptions are the same as in Sec. II.
Similar to that case, the Hamiltonian is solved for the MLG
and BLG parts, and then the appropriate wave functions are
chosen for the left and right semi-infinite BLG regions, which
decay exponentially for x → ±∞.
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FIG. 8. Schematics of a BLG-MLG-BLG structure with (a) ZZ
and (b) AC junctions. W is the width of the MLG region. The upper
pictures show a side view of the systems.

A. Zigzag junctions

Figure 8(a) shows schematically the ZZ junctions for
a BLG-MLG-BLG structure. After solving the Schrödinger
equation [Eq. (2)] for the MLG and BLG regions and applying
the ZZ boundary conditions (19) and (20) at x = 0 and x = W ,
respectively, we obtain the corresponding matrices for the
two valleys K and K ′. To avoid repetition, we only present
the numerical results. The results for the degeneracy of the
zero-energy states are summarized in Table II. Here, too, +n

indicates the additional degeneracy resulting from edge states.
The energy spectrum of an unbiased structure (U1 = U2 =

0) versus xc is shown in Fig. 9 for three different widths of
the MLG ribbon, (a) W1 = 71.58 nm, (b) W2 = 47.72 nm,
and (c) W3 = 11.93 nm, at the two valleys K (blue solid
curves) and K ′ (red dashed curves) with B = 10 T. As
expected, the energy levels approach the LLs of bulk BLG
for xc → ±∞ and converge to the MLG LLs inside the widest
ribbon shown in Fig. 9(a). For the widest ribbon, the spectrum
shows plateaulike (in ZZ2 boundary) and oscillatory (in ZZ1
boundary) features similar to the semi-infinite MLG-BLG
junction [17]. Decreasing the width of MLG ribbon causes
the wave functions of edges to couple with each other and
the spectrum to show only an oscillatory feature through the
ribbon (see below). Further, as seen in Fig. 9(c), the spectrum
for the K ′ valley shows an oscillatory behavior with strong
anticrossings at low energies and near the MLG ribbon, while
the K-valley spectrum shows just oscillatory behavior. It is

TABLE II. Number of zero-energy LLs for each part of a BLG-
MLG-BLG structure at the ZZ (top) and AC (bottom) junctions for
x → ±∞, with the condition that the MLG ribbon is sufficiently wide
for its energy levels to converge to the MLG LLs. The zero-energy
edge states are indicated by +n.

ZZ2 ZZ1
xc BLG (−∞) MLG BLG (+∞)
K 2 1+1 2+2
K ′ 2+2 1+1 2

AC AC
xc BLG (−∞) MLG BLG (+∞)
K 2 1 2
K ′ 2 1 2

also worth noting that there are more (oscillatory) energy
levels inside the MLG ribbon in this BLG-MLG-BLG structure
than in the BLG ribbon of the MLG-BLG-MLG structure, cf.
Figs. 2(c) and 9(c).

In the lower panels of Fig. 9, we plot the wave-function
components for the energies labeled (1)–(6) in Figs. 9(b)
and 9(c). For a wide ribbon [Fig. 9(b)], the states near the
boundaries are strongly confined close to the interfaces and in
the BLG regions [cf. Figs. 9(1) and 9(2)]. Inside the ribbon
and right at the MLG LLs, the carriers are mostly confined
in the ribbon, as point (3) shows. As the width of the ribbon
decreases, the edge states corresponding to the left [of state
(4)] and the right [of state (5)] interfaces overlap and exhibit
confinement on both sides of the BLG ribbon. Right at the
anticrossing, see point (6), the overlap is strong and hence
the spinors have a large amplitude at both boundaries. Points
(1)–(6) show that the spinors of A1 and B2 atoms possess
large amplitudes, since the low-energy spectrum of BLG is
dominated by those nondimer sites, cf. Fig. 8.

Figure 10 shows the energy spectrum of a biased structure
with a MLG ribbon width (a) W2 = 47.72 nm and (b) W3 =
11.93 nm for the two valleys K (blue solid curves) and K ′
(red dashed curves). In the BLG regions, the energy levels,
in the limits x → ±∞, show a gap between the valence and
conduction bands and coincide with the nondegenerate biased
BLG LLs [gray solid (K) and dashed (K ′) lines]. Near the
interfaces and beyond the gap, the energy levels of each valley
with different BLG LL indices show oscillatory feature and
finally merge into the (degenerate) biased MLG LLs (green
solid lines) with the same indices at low energies and for a
wide MLG ribbon, see Fig. 10(a). Decreasing the width of
the MLG ribbon results in the appearance of more energy
levels inside the ribbon, as seen in Fig. 10(b). Further, in
both valleys, the electron states show a smooth oscillatory
and strong anticrossings are visible for the hole states.

B. Armchair junction

The AC junction is shown schematically in Fig. 8(b).
Similar to Sec. II B, we obtain the corresponding 12 × 12
matrix for this AC junction. Below, we present only the
numerical results.

The energy spectra, as a function of xc, are shown in
Fig. 11 for three different widths of the MLG ribbon, (a)
W1 = 71.58 nm, (b) W2 = 47.72 nm, and (c) W3 = 11.93
nm, in a field B = 10 T with U1 = U2 = 0. As mentioned
in Table II, there is no edge state at the AC boundary. The
spectra are symmetric due to the same boundary conditions
applied at x = 0 and x = W . In the limits xc → ±∞, the
energy levels are twofold degenerate and agree with the LLs
of BLG. Near the interfaces, the LL degeneracy is lifted and
each of the levels converge to a different LL in the MLG ribbon
due to the breaking of the inversion symmetry. For the wide
MLG ribbon [Fig. 11(a)] the energy levels converge to the
MLG LLs. For a narrow MLG ribbon, of width comparable
to the magnetic length, e.g., W3 = 12.30 nm ≈ lB = 8.10 nm,
the energy levels increase in number and show an oscillatory
behaviour with anticrossings inside the ribbon [see Fig. 11(c)].

Figure 12 shows the energy levels of a biased structure
(U1 = −U2 = −50 meV) with a MLG ribbon width of (a)
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FIG. 9. (Upper panels) Energy spectrum of an unbiased BLG-MLG-BLG structure (U1 = U2 = 0) as a function of xc/ lB , with ZZ
boundaries in a field B = 10 T, for three different MLG ribbon widths (brown regions): (a) W1 = 71.58 nm, (b) W2 = 47.72 nm, and (c)
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panels show the states for the energies marked by (1)–(6) in panels (b) and (c).

W2 = 48.22 nm and (b) W3 = 12.30 nm, in a field B = 10 T.
The general properties of the unbiased case [see Figs. 11(b)
and 11(c)] remain unchanged except that now (i) the breaking
of the inversion symmetry breaks the electron-hole symmetry,
(ii) an energy gap opens between the electron and hole energy
levels in the MLG ribbon, and (iii) the energy levels coincide
with the nondegenerate biased BLG LLs [gray solid (K) and
dashed (K ′) lines] at xc → ±∞.

IV. DENSITY OF STATES

We now consider the density of states for the studied
structures which can be probed by quantum capacitance
measurements or also using a scanning tunneling microscopy
(STM). It is given by

D(E) = D0

2π

∑
n

∫
dk′

yδ(ε − εn,ky
), (24)

where D0 = 1/
√

2h̄vF and k′
y = xc/ lB . To numerically eval-

uate D(E), we replace the δ function by a Gaussian of
width �1 = 0.025 meV and �2 = 0.005 meV, respectively,
for a MLG-BLG-MLG and a BLG-MLG-BLG structure.
Both widths are smaller than the corresponding energy-level
separation.

Figure 13 shows the DOS as a function of the energy. Panels
(a), (b) are for a MLG-BLG-MLG structure and panels (c), (d)
for a BLG-MLG-BLG one. The upper and lower panels are for

ZZ (with the ribbon width of W2 = 47.72 nm) and AC (with
W2 = 48.22 nm) junctions, respectively.

The blue curves are for an unbiased structure and the red
ones for a biased one with U1 = −U2 = −50 meV. Due to
the electron-hole symmetry, the DOS for unbiased structures
is symmetric in energy whereas that for biased structures is

E
 (m

eV
)

Zigzag

x lc B/

K

K’

x lc B/

Zigzag

(a)

KK’

(b)

W2 W3

FIG. 10. Energy spectrum of a biased BLG-MLG-BLG structure
(U1 = −U2 = −50 meV) versus xc/ lB , with ZZ boundaries in a field
B = 10 T. The MLG width (brown region) is (a) W2 = 47.72 nm and
(b) W3 = 11.93 nm. The bulk MLG and BLG LLs are shown in green
and gray solid lines, respectively.
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FIG. 11. Energy spectrum of an unbiased BLG-MLG-BLG structure (U1 = U2 = 0), as a function of xc/ lB , with AC boundaries in a
magnetic field B = 10 T. The width of the MLG ribbon (brown region) is (a) W1 = 71.34 nm, (b) W2 = 48.22 nm, and (c) W3 = 12.30 nm.
The solid green lines are the LLs of bulk MLG.

asymmetric. The sharp peaks correspond to the LLs of the
extended MLG and BLG sheets. The MLG LL peaks in panels
(a) and (b) are more pronounced than the BLG LL ones shown
in panels (c) and (d). Due to the finite range taken for k′

y and
the broadening of the δ function, the normally infinitely high
peaks at the LLs appear finite. In the unbiased BLG-MLG-
BLG structure we observe peaks with energy E ≈ ±115 meV,
which include the LLs both of the BLG sheet and the MLG
ribbon, see also Figs. 9(b) and 11(b). Small peaks, seen in all
panels, correspond, in each system, to low-energy LLs of either
the ribbon or interface LLs (plateaulike regions) appearing in
the spectra.

When a bias is present the sharp peaks are shifted in a MLG-
BLG-MLG structure; contrast panels (a) and (b). In a BLG-
MLG-BLG structure, though, only the peaks corresponding to
the lowest LLs are shifted and the others are almost unaffected;
contrast panels (c) and (d).
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FIG. 12. Energy spectrum of a biased BLG-MLG-BLG structure
(U1 = −U2 = −50 meV), versus xc/ lB , with AC boundaries in a
magnetic field B = 10 T. The width of the MLG ribbon is (a) W2 =
48.22 nm and (b) W3 = 12.30 nm.

To probe the interface states by STM, the states must
lie in a low-DOS region. In unbiased MLG-BLG-MLG and
BLG-MLG-BLG structures with a magnetic field B = 10 T,
considered in this work, this condition is satisfied. The DOS
is high at the LLs and low in the gaps between LLs. For
instance, in clean samples, LL broadening due to disorder and
interaction effects is less than ∼2 meV [29,30]. For biased
MLG-BLG-MLG structure, it is experimentally possible to
probe the pattern of the states between the lowest MLG LLs.
The appearance of nondegenerate K and K ′ BLG LLs (which
are close to each other at low potentials) in combination with
any LL broadening in real biased BLG-MLG-BLG structures
makes the probing of the interface states difficult. Increasing
the magnetic field results in large LL gaps and enables one to
overcome this difficulty.
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FIG. 13. Density of states in MLG-BLG-MLG and BLG-MLG-
BLG structures for ZZ (upper panels with W2 = 47.72 nm) and AC
(lower panels with W2 = 48.22 nm) junctions. The blue curves pertain
to an unbiased structure and the red ones to a biased one with U1 =
−U2 = −50 meV.
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V. CONCLUSIONS

In summary, we extended the previous study on the interface
Landau levels in a semi-infinite monolayer-bilayer graphene
system [17] and investigated the influence of a finite-size
BLG (MLG) ribbon surrounded by MLG (BLG) regions in
the absence and presence of a perpendicular electric field.
We considered both zigzag and armchair boundaries at the
MLG-BLG junctions. We showed that two line interfaces at
MLG-BLG junctions create two additional zero-energy edge
states at the interfaces for zigzag boundaries (compared to one
zero-energy edge state with one line interface in Ref. [17]). An
oscillatory behavior of the energy spectrum also appears near
the interfaces with zigzag boundaries and is most pronounced
for widths W3 of the order of the magnetic length that cannot
be obtained with one line interface. Our results also show
that interface states are localized at either side of the ribbon
and overlap as the ribbon becomes narrower, which prevents
forming BLG (MLG) LLs inside the BLG (MLG) ribbon.
These interface states exhibit a unidirectional motion along
the interface which can have a group velocity larger than vF .

In the presence of a bias potential that induces a perpen-
dicular electric field in the BLG region, intermediate chiral
states are localized at the MLG-BLG interfaces. Further, in
the biased BLG, the valley degeneracy of the LLs is lifted. By
controlling the width of the BLG (or MLG) ribbon or the type
of boundaries, these intermediate states and their subsequent
magnetic response can be configured. In the case of zigzag
interfaces, the chiral states corresponding to the K and K ′
valleys are confined at opposite sides of the ribbon, suggesting

potential applications. Such chiral states are related to similar
states that have been observed in different BLG systems,
e.g., twisted BLG and BLG subjected to an asymmetric gate
potential.

Without any external potential, the DOS is symmetric with
respect to electrons and holes and exhibits a large peak at zero
energy brought by the zigzag interfaces. The electron-hole
symmetry is broken in biased systems, and LL shifts occur for
both structures. An external bias creates interface LLs in the LL
gaps of the unbiased system in which the DOS can be quite
small. Accordingly, it should be possible to experimentally
probe this pattern of LLs by STM [31].

Although for realistic samples the structure would be
more complex than that modeled here, we believe that the
main features of our near analytical results can be captured
in relevant experimental systems, e.g., the interface LLs in
MLG-BLG planar junctions have been experimentally realized
using scanning tunneling spectroscopy measurements [14,15].
We emphasize that to study a realistic complex system of
interfaces in few-layer graphene samples one could adopt a
tight-binding approach, but then the calculations would be
limited to very small sizes, in contrast with our near analytical
results obtained by the continuum approach.
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