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Electrostatically confined trilayer graphene quantum dots
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Electrically gating of trilayer graphene (TLG) opens a band gap offering the possibility to electrically engineer
TLG quantum dots. We study the energy levels of such quantum dots and investigate their dependence on a
perpendicular magnetic field B and different types of stacking of the graphene layers. The dots are modeled
as circular and confined by a truncated parabolic potential which can be realized by nanostructured gates or
position-dependent doping. The energy spectra exhibit the intervalley symmetry Ee

K (m) = −Eh
K ′ (m) for the

electron (e) and hole (h) states, where m is the angular momentum quantum number and K and K ′ label the
two valleys. The electron and hole spectra for B = 0 are twofold degenerate due to the intervalley symmetry
EK (m) = EK ′ [−(m + 1)]. For both ABC [α = 1.5 (1.2) for large (small) R] and ABA (α = 1) stackings, the
lowest-energy levels show approximately a R−α dependence on the dot radius R in contrast with the 1/R3

one for ABC-stacked dots with infinite-mass boundary. As functions of the field B, the oscillator strengths for
dipole-allowed transitions differ drastically for the two types of stackings.

DOI: 10.1103/PhysRevB.95.155434

I. INTRODUCTION

Due to the absence of a gap in monolayer graphene (MLG),
the charge carriers can tunnel through arbitrarily high and
wide potential barriers at normal incidence, an effect known
as Klein tunneling [1]. However, it is possible to realize
quasibound states [2] with such potential barriers that become
more localized with increasing magnetic field [3]. Also, a
spatially modulated gap [4] can localize electrons in graphene.

Although theoretical works predict that monolayer
graphene on a hexagonal boron nitride (h-BN) substrate [5,6]
may exhibit a large enough gap, about 50 meV wide, to
confine carriers through a gate-defined quantum dot (QD)
in the absence of a magnetic field, this is expected to be
extremely challenging experimentally. Furthermore, uncon-
trolled weakly localized states are created by the substrate-
induced disorder potential in graphene on SiO2 [7,8] and in
suspended graphene nanoribbons [9]. Imperfect confinement
can be realized by p-n junctions [10]. However, the application
of a magnetic field can suppress Klein tunneling, leading to
bound states. Controlled confinement by a combination of
magnetic and electrostatic fields has been investigated both
theoretically [3,11,12] and experimentally [13,14]. Graphene
QDs can be fabricated by direct etching of graphene sheets
in which the edges have a strong influence on their electronic
properties [15–19].

In contrast to MLG, an external gate potential or position-
dependent doping can induce a tunable band gap in the
energy spectrum of bilayer graphene (BLG) [20]. This makes
it possible to realize electrostatically defined BLG QDs.
Moreover, in this type of QDs the precise shape of the edges
is no longer important because confinement can be realized
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far away from the edges of the BLG sheet. Such QDs have
been studied theoretically in Refs. [21,22] and experimentally
realized by two different groups [23,24].

It is also known that the weak van der Waals interlayer
coupling in graphene multilayers exerts a significant influence
on the electronic band structure offering various types of
quasiparticles in the low-energy electronic spectrum [25,26].
Therefore, now that QDs have been experimentally realized in
BLG [23,24], it is of interest to study also QDs with three or
more layers and with different types of stacking arrangements,
e.g., ABC or ABA, and assess the differences in properties
from BLG. Experimental realization of few-layer graphene
is within the grasp of current technology since few-layer
graphene sheets can be fabricated with large areas by mechan-
ical exfoliation [27,28] and by chemical techniques [29–31]
from graphite with controlled stacking order. References
[32–34] are examples of experimental studies of electronic
and transport properties in TLG. Similar to BLG, applying
an electric gate induces a band gap in the energy spectrum
of TLG [32,34–37]. The difference in the stacking order of
layers in extended graphene was shown to strongly affect the
electric-field-induced band gap in Ref. [38] with the one of the
ABC stacking being much larger than that of the ABA one.

The aim of this study is to focus on the energy levels of
electrostatically defined QDs on trilayer graphene (TLG), in
the presence or absence of a magnetic field, and contrast the
results for ABC and ABA stackings. In doing so, we extend
significantly the results of our recent work [39], in which only
the ABC stacking was studied and the dot confinement resulted
from an infinite-mass boundary condition. We consider, here,
parabolic confinement by means of external gates or a position-
dependent doping, which eliminates the effects due to the
edges.

The paper is organized as follows. In Sec. II, we present
the basics of the model of a QD in TLG for ABC and ABA
stackings. In Sec. III, we present numerical results for the
two stackings and the corresponding oscillator strengths. A
summary and concluding remarks follow in Sec. IV.
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FIG. 1. (Upper panels) Schematics of interlayer couplings in TLG
for (a) ABC stacking and (b) ABA stacking. Ai and Bi , i = 1,2,3,
are the layer sublattices, t ≈ 400 meV the interlayer coupling, and
Ui (i = 1,2,3) the potentials applied to the layers. (Lower panels)
Low-energy band structures of (c) ABC- and (d) ABA-stacked TLG
in the absence of bias (Ui = 0, dashed curves) or in the presence of
bias (solid curves) as specified in the upper panels with U0 = 50 meV.

II. MODEL

We consider TLG as three honeycomb sheets, of cova-lent-
bonded carbon atoms, stacked in an ABC or ABA manner; both
stacking configurations are realized experimentally [27–31].
The upper panels in Fig. 1 show schematically these stackings
and the potentials Ui applied to the layers. We assume that
hopping between planes takes place only between atoms which
are on top of each other in neighboring layers. Thus, the whole
model is defined by the parameters vF and t .

A. ABC stacking

The Hamiltonian describing a Dirac electron in the presence
of a circular barrier in ABC-stacked TLG is given by [40,41]

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1 vF π t 0 0 0

VF π † U1 0 0 0 0

t 0 U2 vF π † 0 0

0 0 vF π U2 0 t

0 0 0 0 U3 vF π

0 0 0 t vF π † U3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where Ui (i = 1,2,3) are the potentials applied to the graphene
layers and vF = 3aγ0/2h̄ ≈ 106 m/s is the Fermi velocity of
monolayer graphene, the intralayer nearest-neighbor hopping
is γ0 ≈ 3 eV, and the carbon-carbon distance a ≈ 1.42 Å
[42]. π = πx + iτπy and π † = πx − iτπy are the momentum
operators, in the presence of a magnetic field B perpendicular
to the layers, given by π = −ih̄∇ + eA. The values τ =
+1 and −1 distinguish the K and K ′ valleys, respectively,
and the vector potential A, taken in the symmetric gauge,

is A(r) = (0,Br/2,0). Here, we include only the nearest-
neighbor interlayer coupling term t ≈ 400 meV in Eq. (1),
and do not take into account the hopping terms γ2, . . . ,γ6

[41], which are relevant to a description of finer details of the
band structure such as the trigonal warping. The zero-field
bulk band structure is shown in Fig. 1(c) for unbiased (Ui = 0,
dashed curves) and biased (solid curves) ABC-stacked TLG
as specified in Fig. 1(a) with U0 = 50 meV. Comparing the
continuum and tight-binding band structure [43] shows that
the former one can be valid, approximately, in the energy
range of −800 meV � E � 800 meV.

In polar coordinates r and θ , π and π † take the form in
dimensionless units

vF π = −ih̄vF eiτθ [∂/∂ρ + (iτ/ρ)∂/∂θ − τβ], (2)

vF π † = −ih̄vF e−iτθ [∂/∂ρ − (iτ/ρ)∂/∂θ + τβ], (3)

where ρ = r/R, β = eBR2/2h̄ = R2/2l2
B , and lB = √

h̄/eB

is the magnetic length.
Similar to Ref. [21], the eigenstate of the Hamiltonian (1)

for the K valley is given by the six-component wave function

ABC and that for the K ′ valley by 
 ′

ABC:


ABC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eimθφA1

iei(m−1)θφB1

eimθφB2

iei(m+1)θφA2

ei(m+2)θφA3

iei(m+1)θφB3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 
 ′
ABC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ei(m+1)θφA1

iei(m+2)θφB1

ei(m+1)θφB2

ieimθφA2

ei(m−1)θφA3

ieimθφB3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where m = 0, ± 1, ± 2, . . . is the angular momentum label
and φA1, . . . ,φB3 are the envelope functions corresponding to
different sublattices A1, . . . ,B3, respectively. For simplicity
we removed the ρ dependence of all φ, i.e., we set φA1 ≡
φA1(ρ), etc. We note that the orbital angular momentum Lz =
−ih̄∂θ does not commute with the Hamiltonian (1) and is not
a conserved quantity. However, the wave functions (4) are
eigenstates of the operator

JABC
z = Lz + h̄

2

⎛
⎜⎝

α1I 0 0

0 −I 0

0 0 α2I

⎞
⎟⎠

± h̄

2

⎛
⎜⎝

−σ z 0 0

0 +σ z 0

0 0 −σ z

⎞
⎟⎠, (5)

with eigenvalue m. I is the 2 × 2 identity matrix and σ z the
Pauli matrix. Further, {α1,α2} ≡ {1, − 3} ({−3,1}) and + (−)
refers to the K (K ′) valley.

The radial dependence of the wave-function components is
described, in dimensionless units, by the coupled differential
equations[

∂

∂ρ
− τ

m − 1

ρ
− τβρ

]
φB1 = (ε − u1)φA1 − t ′φB2,

[
∂

∂ρ
+ τ

m

ρ
+ τβρ

]
φA1 = −(ε − u1)φB1,
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[
∂

∂ρ
+ τ

m + 1

ρ
+ τβρ

]
φA2 = (ε − u2)φB2 − t ′φA1,

[
∂

∂ρ
− τ

m

ρ
− τβρ

]
φB2 = −(ε − u2)φA2 + t ′φB3,

[
∂

∂ρ
− τ

m + 1

ρ
− τβρ

]
φB3 = (ε − u3)φA3,

[
∂

∂ρ
+ τ

m + 2

ρ
+ τβρ

]
φA3 = −(ε − u3)φB3 + t ′φA2, (6)

where E0 = h̄vF /R, ε = E/E0, t ′ = t/E0, and ui = Ui/E0,
i = 1,2,3.

Now, we consider a circular-symmetric, position-dependent
potential, such as the one described in Refs. [21,22]. In this
case, we set U2 = 0 and U1 = −U3 = Ub(r), where Ub(r) is
taken to be the parabolic potential

Ub(r) =
{
U0 r2/R2, r < R

U0, r > R
(7)

with U0 the depth of the well. The position-dependent gap,
which vanishes at the center of the QD, confines the carriers
in the central region. This type of potential profile may be
achieved by controlled doping of the surface or by applying
gate electrodes [35,37,44,45].

B. ABA stacking

Using a simple model for ABC-stacked TLG, i.e., including
only γ0 and t , describing the nearest-neighbor intralayer
and interlayer hopping, respectively, the ABA-stacked TLG
[Fig. 1(b)] Hamiltonian reads as [40,46]

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1 vF π t 0 0 0

vF π † U1 0 0 0 0

t 0 U2 vF π † t 0

0 0 vF π U2 0 0

0 0 t 0 U3 vF π

0 0 0 0 vF π † U3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where the corresponding wave functions 
ABA (K valley) and

 ′

ABA (K ′ valley) are


ABA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eimθφA1

iei(m−1)θφB1

eimθφB2

iei(m+1)θφA2

eimθφA3

iei(m−1)θφB3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 
 ′
ABA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ei(m−1)θφA1

ieimθφB1

ei(m−1)θφB2

iei(m−2)θφA2

ei(m−1)θφA3

ieimθφB3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

The wave functions (9) are eigenstates of the operator

JABA
z = Lz ± h̄

2

⎛
⎜⎝

I 0 0

0 −I 0

0 0 I

⎞
⎟⎠ ± h̄

2

⎛
⎜⎝

−σ z 0 0

0 +σ z 0

0 0 −σ z

⎞
⎟⎠,

(10)
with eigenvalues m and m − 1 at the K and K ′ valleys,
respectively. Again + (−) refers to the K (K ′) valley.

The radial dependence of the wave function components
are obtained from the coupled differential equations
[

∂

∂ρ
− τ

m − 1

ρ
− τβρ

]
φB1 = (ε − u1)φA1 − t ′φB2,

[
∂

∂ρ
+ τ

m

ρ
+ τβρ

]
φA1 = −(ε − u1)φB1,

[
∂

∂ρ
+ τ

m + 1

ρ
+ τβρ

]
φA2 = (ε − u2)φB2 − t ′φA1 − t ′φA3,

[
∂

∂ρ
− τ

m

ρ
− τβρ

]
φB2 = −(ε − u2)φA2,

[
∂

∂ρ
− τ

m − 1

ρ
− τβρ

]
φB3 = (ε − u3)φA3 − t ′φB2,

[
∂

∂ρ
+ τ

m

ρ
+ τβρ

]
φA3 = −(ε − u3)φB3. (11)

By applying the potentials U1 = U0 = 50 meV and U2 =
U3 = 0 [cf. Fig. 1(b)], one can induce an asymmetric band
gap ∼U0/2 [see Fig. 1(d)] in contrast with that for an ABC
stacking, shown in Fig. 1(c), which is symmetric and equal
to 2U0. For the position-dependent parabolic potential (7),
one can solve Eqs. (6) and (11) numerically to obtain the
energy levels. We use the standard finite-element package
COMSOL MULTIPHYSICS [47] to obtain the eigenvalues and
eigenfunctions of the systems of coupled Eqs. (6) and (11).

The COMSOL MULTIPHYSICS package finds the eigenvalues
and corresponding eigenfunctions of a set of coupled partial
differential equations. It employs the finite-element approach
to solve the equations and allows us to check the numerical
error at each iteration. The convergence criterion in our
calculations is set to 10−16 (=10−6 % relative error/tolerance)
and it takes few iterations to reach convergence. For the
boundary conditions, all the wave-function components are
set to zero at infinity (r → ∞) and no specific conditions
are imposed at the origin so that the envelope functions can
have finite values at the origin (r = 0). At r = R all envelope
functions are required to be continuous. The size of the
discrete mesh is also important and we decrease it until the
results remain unchanged. We found that setting r∞ > 20R,
as the computational box size, is sufficient for the results to
remain unchanged. The confined (or bound) states are those
where the corresponding spinors decay at large radial distance
(r → ∞) regardless of their energy, while the wave spinors of
unconfined (or unbound) states are like plane waves which do
not decay as r increases.

C. Oscillator strength

For electric dipole transitions between states m′ and m, the
oscillator strength is given by |〈
m′ |reiφ|
m〉|2 [48] and can
be expressed as

T = (TA1 + TB1 + TA2 + TB2 + TA3 + TB3)2, (12)

with

Tν = 2πN ′Nδm′,m+1

∫
φm′

ν (ρ)ρ2φm
ν (ρ)dρ; (13)
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here, ν = A1, . . . ,B3 and N ′ (N ) is the normalization constant
for the states m′ (m). It is worth noting that we limit ourselves to
intravalley transitions, and that the intervalley ones are absent.
In the next section, we will evaluate the oscillator strength for
both types of layer stacking.

III. NUMERICAL RESULTS

A. ABC stacking

Figures 2(a) and 2(b) show the energy spectrum as a
function of the dot radius R, at the K (solid curves) and
K ′ (dashed curves) valleys, with well depth U0 = 50 meV,
for (a) B = 0 T and (b) B = 10 T. These results are for the
angular momentum values m = −1 (blue), m = 0 (green), and
m = 1 (red). The spectrum consists of a series of discrete levels
indicating the existence of confined states.

For zero magnetic field [Fig. 2(a)], the energy levels are
separated by a gap, depending on the angular momentum
and dot radius, which closes when R increases. Notice that
bound states appear in the band gap ∼2U0. For B = 0,
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FIG. 2. (Upper panels) Lowest-energy states of an ABC-stacked
TLG QD as a function of the dot radius R, for m = −1 (blue), m = 0
(green), and m = 1 (red), at the valleys K (solid) and K ′ (dashed)
with (a) B = 0 and (b) B = 10 T. The well depth is U0 = 50 meV.
The spectrum for B = 0 is twofold degenerate due to the symmetry
EK (m) = EK ′ [−(m + 1)]. Both spectra also show the symmetry
Ee

K (m) = −Eh
K ′ (m). Lower panels (c) and (d) are the amplitude of

the wave functions corresponding to, respectively, the points labeled
by 1 and 2 in the energy spectrum of Fig. 2(b). Layer 1 (2, 3) is
represented by the blue (red, green) curves. Sublattices Ai , (Bi) are
represented by solid (dashed) curves.

the energy levels are twofold degenerate due to the valley
symmetry EK (m) = EK ′ [−(m + 1)] states. Furthermore, the
energy levels in Fig. 2(a) exhibit the symmetry Ee

K (m) =
−Eh

K ′ (m) between the electron and hole states. However, in
contrast to conventional two-dimensional (2D) semiconductor
QDs [49], the Ee(m) = Ee(−m) symmetry is broken for each
valley. This is due to the breaking of the inversion symmetry
in the presence of an induced perpendicular electric field
in gated TLG QDs. For B �= 0 [Fig. 2(b)], the degeneracy
of the valleys is lifted but the electron-hole symmetry is
still preserved. By increasing R, the magnetic confinement
becomes important, as the energy levels approach the Landau
levels (LLs) of an unbiased ABC-stacked TLG sheet, for
which the states form a set of degenerate levels. The LLs
of an ABC-stacked TLG sheet can be obtained from Refs.
[50,51]. The well depth does not affect the higher energies
since they are localized in the asymptotic region where
the potential is constant. Consequently, these states behave
as ABC-stacked TLG LLs. Due to the interplay between
magnetic and electrostatic confinements, the spectrum shows
level crossings which occur when the lower-energy states
evolve into magnetically confined states with larger Landau
indices by increasing the dot radius. These crossings occur
for all states with m � 0 which contribute to the zero-energy
LL. As a result of coupling between the gap- and magnetic-
field-induced states, anticrossings of energy levels occur. We
will consider this property in more detail in Sec. III B, ABA
stacking.

The wave functions corresponding to the states labeled by
1 and 2 in the spectrum of Fig. 2(b) are shown in Figs. 2(c)
and 2(d), respectively. As seen in Fig. 2(c), state 1 shows that
the carrier is mostly confined in the dot region with decaying
tail in the barrier region. On the other hand, state 2 [Fig. 2(d)],
with the shallower wider potential, is completely confined
inside the dot region indicating that magnetically confinement
dominates. It is worth mentioning that the amplitudes of the
spinor component corresponding to B1 and A3 sublattices are
largest and more spread out over the dot. The A2 sublattice
spinor component is the only one which is centered around
r = 0 with nonzero value at r = 0.

As a function of the well depth U0, the energy spectrum
is shown in Figs. 3(a) and 3(b) in the absence (B = 0) and
presence (B = 10 T) of magnetic field, respectively. The
results are shown for m = −2 (black), m = −1 (blue), m = 0
(green), m = 1 (red), and m = 2 (purple) at the valleys K

(solid curves) and K ′ (dashed curves) with dot radius R =
25 nm. For B = 0, beyond the energies E = ±U0 [delimited
by the black dashed lines in Fig. 3(a)] the spectrum is
continuous (yellow regions) and the bound states appear in
the band gap (∼2U0). Increasing the well depth removes the
degeneracy of the lowest-energy states, as seen by realizing
the more discreet energy levels in the band gap. Due to the
Mexican-hat shape of the low energies in a biased ABC
stacking TLG [see Fig. 1(a)], the exact value of the band gap
is smaller than 2U0. This is the reason for the extension of
the continuous spectrum to the right of the E = ±U0 lines, as
seen in Fig. 3(a). When the field B is present, the continuous
spectrum is absent [see Fig. 3(b)]. For U0 → 0 the results are
the LLs of an unbiased ABC-stacked TLG QD, which are de-
generate for different m as well as valleys. Further increase of
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FIG. 3. Energy levels of an ABC-stacked TLG QD as a function
of the well depth U0 for m = −2 (black), m = −1 (blue), m = 0
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the well depth U0 breaks this degeneracy and the spectrum
becomes strongly dependent on m.

In Fig. 4(a), we show the energy levels as a function of
the magnetic field B, at the K valley, for angular momenta
m = −2 (black), m = −1 (blue), m = 0 (green), m = 1
(red), and m = 2 (purple) with U0 = 50 meV and dot radius
R = 25 nm. For the two angular momenta, m = −1 and
0, the spectrum is plotted at both valleys K and K ′ in
Fig. 4(b). For B = 0 bound states exist in the symmetric
band gap 2U0 and are degenerate because of the equality
EK (m) = EK ′ [−(m + 1)] [see Fig. 4(a)]. For B �= 0, this
degeneracy is lifted, especially that of the lowest states, but
electron-hole symmetry Ee

K (m) = −Eh
K ′ (m) is still preserved.

For large fields, magnetic confinement becomes important.
If confinement is absent, the energy levels merge into the
LLs (black dotted curves) of a pristine ABC-stacked TLG
sheet. As is evident from Fig. 4(a), the lowest electron energy
level corresponding to m = −2 crosses the zero-energy level
at about B ∼ 11 T, and approaches the zero LL as a hole state.
In general, this holds for the m < −2 levels as well. Similar to
the previous study of ABC-stacked TLG QD with infinite-mass
boundary condition [39], the states with m � 0 in both valleys
form the zero-energy LL in the conduction and valence bands.

B. ABA stacking

Figure 5 shows the lowest-energy levels of an ABA-
stacked TLG QD, as a function of the dot radius R, for
m = −1 (blue curves), m = 0 (green curves), and m = 1 (red
curves), U0 = 50 meV, at the two valleys K (solid) and K ′
(dashed), with (a) B = 0 and (b) B = 10 T. For B = 0, bound
states appear in the energy gap (�g = U0/2) beyond which
the spectrum is continuous (yellow regions). Moreover, the
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FIG. 4. (a) The lowest-energy levels of an ABC-stacked TLG
QD as a function of the magnetic field B, with U0 = 50 meV and
dot radius R = 25 nm for the K valley. The angular momenta are
m = −2 (black), m = −1 (blue), m = 0 (green), m = 1 (red), and
m = 2 (purple). The dotted curves show the Landau levels of an
unbiased ABC-stacked TLG. (b) As in (a) for m = −1 and m = 0 at
the two valleys K and K ′.

spectrum is twofold degenerate due to the symmetry EK (m) =
EK ′[−(m − 1)]. A set of energy levels exists near E = 0 at
small radii as a result of the Mexican-hat-shaped low-energy
dispersion in a biased ABA-stacked TLG [see Fig. 1(d)].
Further, the lowest electron energy level E(m = 1) of the
ABA-stacked TLG dot is smaller than that of the ABC-stacked
one when B = 0 (cf. Fig. 9). In presence of the magnetic field,
as shown in Fig. 5(b), the mentioned degeneracy between the
valleys K and K ′ is broken and the energy levels approach the
LLs of ABA-stacked TLG [see Eqs. (6) and (7) in Ref. [50]].
Similar to the ABC-stacked case, here too the spectrum shows
level crossings due to the interplay between magnetic and
electrostatic confinements. These crossings occur for all states
with m � 0 which contribute to the zero-energy LL. Also
here, coupling between the gap- and magnetic-field-induced
states can result in the formation of anticrossings in the energy
spectrum. For example, as shown in the inset of Fig. 5(b),
anticrossings appear in the shown energy range when the
magnetic field is low, e.g., B = 1 T. A strong magnetic field can
suppress the couplings reducing the size of the anticrossings.

Results for the spectrum of an ABA-stacked TLG QD,
of radius R = 25 nm, as a function of the well depth U0
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FIG. 5. Energy levels of ABA-stacking TLG QD as a function
of dot radius R, for the angular momenta m = −1 (blue), m = 0
(green), and m = 1 (red), with U0 = 50 meV at the two valleys K

(solid) and K ′ (dashed) when (a) B = 0 and (b) B = 10 T. For B = 0,
the spectrum is twofold degenerate due to the symmetry EK (m) =
EK ′ [−(m − 1)]. The inset shows examples of anticrossings due to the
hybridization between the gap- and magnetic-field-induced states at
low magnetic fields, e.g., B = 1 T, for m = −1 at the K ′ valley.

are shown in Fig. 6. The angular momenta are m = −1
(blue), m = 0 (green), m = 1 (red). The solid and dashed
curves are for the K and K ′ valleys, respectively, in both
zero magnetic field (a) and B = 10 T (b). For B = 0 and
U0 = 0, the spectrum is continuous (yellow regions) while a
finite U0 induces an asymmetric band gap ∼U0/2. The value
of the band gap starts to deviate from the value of U0/2
with increasing U0, as delimited by the black dashed lines
in Fig. 6(a). This deviation can be linked to the Mexican-
hat-shaped low-energy dispersion for a biased ABA-stacked
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(dashed), with (a) B = 0 and (b) B = 10 T. The yellow region in (a)
shows the continuous B = 0 spectrum.
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FIG. 7. Energy spectrum of an ABA-stacked TLG QD as a
function of the magnetic field B, with U0 = 50 meV and dot radius
R = 25 nm at the K (solid curve) and K ′ (dashed curve) valleys. The
blue, green, and red curves are for angular momenta m = −1, 0, and
1, respectively. The black dotted curves show the Landau levels of
an ABA-stacked TLG sheet. The inset shows an enlarged view of the
spectrum, showing the anticrossings for angular momentum m = −1
and the K ′ valley.

TLG which is more pronounced for large gate potentials. The
formation of discrete levels (which reflect the confined states)
depends on the angular momentum and the well depth. As
seen in Fig. 6(a), large |m| requires a large potential to realize
confined states. Due to the opening of an asymmetric energy
gap, unlike in the ABC-stacked case, the hole bound states
are absent at zero magnetic field. The magnetic field removes
the degeneracy of the continuous spectrum and makes the
energy levels discreet as shown in Fig. 6(b). For U0 = 0, we
have the LLs of an unbiased ABA-stacked TLG sheet, being
degenerate for different m’s and valleys, as expected. However,
as the well depth increases, the electrostatic confinement
becomes important, as seen by the removal of their U0 = 0
degeneracies. Further, as seen in Fig. 6(b), the electron states
are more affected than the hole ones for B �= 0. In other words,
increasing U0 weakens the confinement of the negative energy
states as seen by the lower resolution of the discrete levels at
these energies. The same behavior is seen for the gap-induced
MLG QDs in a quantum well potential [4].

The lowest-energy levels of an ABA-stacking TLG QD, as a
function of the field B, are shown in Fig. 7 for m = −1 (blue),
m = 0 (green), and m = 1 (red) at the valleys K (solid curve)
and K ′ (dashed curve). Here, the well depth is U0 = 50 meV
and dot radius R = 25 nm. For B = 0, bound states appear in
the asymmetric energy gap (∼U0/2) in the positive range of
energy. Notice the difference with ABC stacking in which the
gap 2U0 is symmetric (see Fig. 4), and bound states exist above
and below E = 0. Increasing the field B, the degeneracy of
the m levels as well as that of the valleys are lifted due to the
breaking of time-reversal symmetry. At high magnetic fields,
the energy levels merge into the LLs (black dotted curves)
of an unbiased ABA-stacking TLG sheet. The gap-induced
states can hybridize with states induced by the magnetic field
resulting in the formation of anticrossings for energy levels
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belonging to the same m (see inset of Fig. 7). The spectrum
shows crossings between energy levels with different m and
valleys. In contrast with the ABC-stacked dot, only electron
states contribute to the zero-energy LL.

To demonstrate the way of hybridization of the gap- and
magnetic-field-induced states, we plot, in Fig. 8, the spinor
components for the energies labeled by (a)–(h) in the inset
of Fig. 7. As a result of the gap, for B = 0 only one
bound state appears in it with energy Ea ≈ 18.86 meV. The
corresponding quantum state is shown in Fig. 8(a). As seen,
the carrier is mostly confined inside the dot region, but still
the spinors have a substantial amplitude in the barrier region.
The presence of the carrier in the barrier region is a result of
Klein tunneling. As B increases, the magnetic-field-induced
states couple to the upper continuum energies merging into
the unbiased ABA-stacked TLG LLs via anticrossings. Before
and away from the anticrossing point [e.g., Fig. 8(b)], the
coupling is weak and the state has a large amplitude in
the barrier region. Near and right at the anticrossing [e.g.,
Figs. 8(c), 8(d), 8(e), 8(g), and 8(h)], the coupling is strong and,
hence, the amplitude of each state inside the dot region is large.
Then, as B increases, the amplitude of spinors in the barrier
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FIG. 9. Lowest-electron-energy levels (m = 1 at the K valley)
for an ABC-, ABA-stacked TLG QD, and for a AB-stacked BLG QD
(blue filled, red open circles, and black open triangles, respectively).
The fitting (solid curves) shows a ∼a/R dependence for the ABA-
stacked TLG and AB-stacked BLG dots. For the ABC-stacked TLG
dot, the fitting shows a ∼a/R1.2 (blue solid curve) and ∼a/R1.5 (blue
dashed curve) dependence at small and large radii, respectively. The
well depth is U0 = 50 meV and the corresponding fitting parameter
a, in units of meV × nm, is equal to 283.7 (ABA), 279.9 (BLG),
280.2 (ABC, R � 40 nm), and 854.6 (ABC, R � 40 nm).

is gradually suppressed and the state becomes confined near
the center of the dot. This occurs, for example, for Fig. 8(f).
Comparison of the states Figs. 8(a), 8(g), and 8(h), marked
by red circles, with Figs. 8(b)–8(f) (black circles) shows that
the latter ones typically have extra nodes. As seen in the most
of the states, the behavior of the spinors at the B1 and B3
sublattices are similar to each other. This is expected as we
can see from the ABA-stacked TLG structure in Fig. 1(b), in
which the B1 and B3 sublattices physically have the same
status except for the applied potentials. On the other hand, the
spinors of B1, B3, and A2 atoms possess large amplitudes.
They can be occupied at low energies which do not have a
counterpart atom in the other layers.

In Fig. 9, we compare the results of the lowest-electron-
energy levels (m = 1 for the K valley), versus dot radius,
for three types of QDs, i.e., ABC-, ABA-stacked TLG and
AB-stacked BLG with U0 = 50 meV [for BLG we set
U1 = −U2 = Ub(r)]. They are marked by blue filled, red
open circles, and black open triangles, respectively. The solid
curves show the fittings to the power-law dependence ≈Rα .
The ground-state energies of the ABA-stacked TLG and
AB-stacked BLG dots exhibit a ∼1/R dependence. This can
be understood by recalling that the width of the electron state l0
in a 2D electron gas system with a parabolic potential V (r) =
ω2

0r
2/2 is proportional to 1/

√
ω0. In analogy with this, we

note that the ABA TLG and AB BLG sheets have a quadratic
low-energy dispersion E ∼ k2 ∼ 1/l2

0 = ω0. In our case, the
parabolic potential profile U (r) = (U/R2)r2 gives ω0 ∝ 1/R

and consequently the lowest-energy level Emin ∝ 1/R. In a
similar manner, considering the cubic low-energy dispersion
of an ABC TLG sheet, one has E ∼ k3 ∼ 1/l3

0 ∼ ω
3/2
0 which

results in E ∝ 1/R1.5. Our fitting for the ABC-stacked TLG
shows a ∼1/R1.2 dependence for R � 40 nm and ∼1/R1.5

for R � 40 nm. The different α value at small radii is
due to the Mexican-hat-shaped (i.e., noncubic dispersion)
low-energy spectrum which is relevant for small dot sizes. For
ABC-stacked TLG and AB-stacked BLG QDs, resulting from
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an infinite-mass boundary condition, the lowest-energy levels
show a ∼1/R3 [39] and ∼1/R2 [52] dependence. This can be
linked to the fact that, unlike for parabolic confinement, the
wave-function width for an infinite-mass potential is analogous
to that for hard-wall confinement and given by the size of the
dot.

C. Oscillator strength

Finally, we evaluate the oscillator strengths for both stack-
ings using Eqs. (12) and (13). The dipole-allowed transitions
(m,m′) ≡ (−1,0) (blue), (0,1) (red), and (1,2) (green), which
correspond to the transitions between the lowest-energy levels,
are shown as functions of the magnetic field B in Fig. 10 for (a)
an ABC stacking and (b) an ABA stacking. The solid curves
are for the K valley and the dashed ones for the K ′ valley. As
shown, there is a significant difference between the results of
the two stackings. For the ABC stacking, the results show that
the dipole-allowed transitions (1,2) and (0,1) at the K ′ valley
are predominant at low magnetic fields but they decay with
increasing B and other transitions become stronger. For the
ABA stacking, except for small B fields (B � 1.2 T) in which
the transition (−1,0) from the K valley is remarkable, for other
magnetic fields the predominant transition is (1,2) from the K

valley. Due to the crossings of the energy levels in Figs. 4 and 7,
sudden changes occur in the transitions at these points. As can
be seen, all transitions decay by increasing the magnetic field.
At large B (B � 15 T), all transitions are suppressed due to the
strong localization of the states at the center of the dot, resulting
in vanishing overlap between the wave functions. This B-field
dependence of the oscillator strengths is strikingly different
from that of the corresponding oscillator strengths in extended
graphene sheets [53], which do not show such a reduction

with B, and results from an entirely different QD spectrum
and reduced overlap of the eigenfunctions involved.

IV. SUMMARY AND CONCLUDING REMARKS

We studied the energy levels of electrostatically confined
quantum dots in TLG and investigated their dependence
on a perpendicular magnetic field B, and contrasted the
results of the two most stable layer stackings, the ABC and
ABA stackings. Our numerical results for parabolic confining
potentials are expected to approximate well those of the actual
potentials. Similar to gate-defined QDs in BLG [23,24], the
TLG QDs we studied can be realized experimentally by, e.g.,
the application of nanostructured gates.

We showed that the energy spectra exhibit the intervalley
symmetry Ee

K (m) = −Eh
K ′ (m) for electron (e) and hole (h)

states, where m is the angular momentum quantum number
and K,K ′ the two valleys. For B = 0 the electron and
hole spectra are twofold degenerate due to the symmetry
EK (m) = EK ′[−(m + 1)]. A Mexican-hat-shaped gap exists
in the spectrum for finite potential on the bottom layer
U0 �= 0 of either stacking but as U0 increases so does the
continuous spectrum albeit slightly. For finite B, bound states
are created in this gap and the B = 0 degeneracies are lifted.
The lowest-energy levels show a ∼1/R dependence on the dot
radius R, for ABA-stacked TLG. For the ABC-stacked TLG,
the lowest electron state exhibits a ∼1/R1.2 dependence at
small radii and ∼1/R1.5 at large radii. This is in contrast with
the 1/R3 one for ABC-stacked dots created by an infinite-mass
boundary condition.

As functions of the magnetic field, the corresponding
oscillator strengths for the dipole-allowed transitions differ
drastically between the two stackings. For either stacking,
they also differ drastically from those of unconfined TLG [53]
especially at strong magnetic fields.

The present calculations are for single-particle states. For
many particle QDs, one has to include the Coulomb interaction
which may importantly affect the energy spectrum as was
shown recently for a BLG QD (two electrons) in Ref. [54].

Note added. Recently, we came across numerical simula-
tions of a gate-defined ABC-stacked TLG QD [55]. In this
work, however, a less realistic step electrostatic potential was
used.
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