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� We study electron transport through single/double barriers on monolayer MoS2.

� The conductance gc and the polarization oscillate with barrier width d.
� The conductance versus ferromagnetic field M decreases in a fluctuating manner.
� The spin polarization Ps oscillates as a function of M before it becomes 100%.
� As for AFM barriers the conductance exhibits an oscillating behavior for d 20 nm> .
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a b s t r a c t

We study ballistic electron transport through single or double barriers on monolayer MoS2, of width d, in
the presence of a ferromagnetic field M or an antiferromagnetic field F. The total conductance gc, its spin-
up and spin-down components, and the polarization oscillate with d or the distance b between two
barriers. The corresponding oscillation periods are different. The conductance gc versus M decreases in a
fluctuating manner with a steep decline at certain value of M. As a function of M the spin polarization Ps
oscillates before it becomes 100% while the valley polarization Pv oscillates and steadily increases.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Since its discovery graphene has attracted a remarkable at-
tention due to its exotic properties and potential applications in
various fields [1]. Still there remain fundamental problems due to
its zero band gap and weak spin–orbit interaction (SOI). These
problems could be overcome by, e.g., using silicene, the silicon
analog of graphene, a similar material called germanene, or MoS2
and other dichalcogenide materials, all of them promising candi-
dates for the next generation nanoelectronic devices [2–5]. A re-
view of silicene's properties is given in Ref. [6]. Here we focus on
MoS2, a semiconducting analogue of graphene, which has a hon-
eycomb structure similar to graphene's [7]. In addition though, it
has a huge intrinsic direct band gap, 1.66 eV wide, and a very large
SOI 2 150 meVλ = [7,8]. This strong SOI can lead to spin- and
valley-polarized transport and the energy dispersion may be
stajić),
manipulated as recent works indicate [9–11]. Such a transport has
been studied in silicene, in which the SOI strength is 3.9 meV, in
the presence of exchange fields and led to novel spin and valley
polarizations [12,13]. Given the huge gap and very strong SOI in
MoS2, we expect to find significant differences in similar studies.
Here we study spin- and valley-polarized transport through fer-
romagnetic (FM) and antiferromagnetic (AFM) barriers in MoS2.

The paper is organized as follows. In Section 2 we present the
basic expressions for ballistic transport through FM barriers as
well as the results for the conductance and polarizations. In Sec-
tion 3 we do the same for AFM barriers, and in Section 4 we
present our conclusions.
2. Ferromagnetic (FM) barriers

We consider a monolayer of MoS2 in the (x,y) plane. Particles in
MoS2 are described by the two-dimensional (2D) Dirac-type Ha-
miltonian [14–16]
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Fig. 1. Energy dispersion for M 0z = in (a) and M 50 meVz = in (b). Further, 830 meVΔ′ = , 37.5 meVλ′ = , 0.43α = and 2.21β = . The dash-dotted black curve is the spectrum
for 0α β= = .
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Here 1η = ± for valleys K and K′, /2Δ Δ′ = , Δ is the mass term that
breaks the inversion symmetry, /2λ λ′ = , λ is the SOI strength, si,
i x y z, ,= , are the Pauli matrices for the valence and conduction
bands, and I is the identity matrix. The α term takes into account
the difference between electron and hole masses, and the β term
leads to new topological phenomena. Further, s 1 1z = ( − ) for
spins up (down), and v denotes the Fermi velocity of the electrons.
Mz is the exchange field. The eigenvalues pertaining to Eq. (1) are
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where c vkk = , k
m4

2 2

0
Δ Δ λ ξ= ′ − ′ +ξ

β , szξ η= . The energy dispersion

is shown in Fig. 1(a) for M 0z = , and in Fig. 1(b) for M 50 meVz = .
The dash-dotted black curve is for 0α β= = . The gap is 2Δ′, with

830 meVΔ′ = , SOI constant 37.5 meVλ′ = , and 0.43α = , 2.21β =
(Ref. [16]).

The corresponding eigenfunctions are written as
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For electrons it is t 1=+ and for holes t 1= − .
First we consider a FM barrier of width d (region II) between

two normal regions (I and III) of MoS2. The eigenfunctions in re-
gions I, II, and III are
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Here r szη and t szη are the reflection and transmission coefficients.
Further Ai, and Bi are eigenvector components pertinent to
Eq. (3), that is A v k kx y1

2 2 1/2η= ( + ) , A v q kx y2
2 2 1/2η= ( + ) , and

B t k k D k k, / ,k x y k x y1 Δ δ= − ( − ( )) ( )ξ ξ ξ , while B t q k D q k, / ,k x y k x y2 Δ δ= − ( − ( )) ( )ξ ξ ξ .
Note that the angles θ and ϕ are the angles the momentum makes
with the x-axis, k karctan /y xθ = ( ), and k qarctan /y xϕ = ( ). Due to the
translational invariance the transverse momentum is conserved,
i.e., k ky y′ = . The transmission amplitude is found from the con-
tinuity of the wave functions x y x y0, 0,I IIΨ Ψ( = ) = ( = ) and

x d y x d y, ,II IIIΨ Ψ( = ) = ( = ). The resulting transmission reads
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with k t k t/F k F kγ Δ δ Δ δ= ( ′ − ′ ) ( ′ ( − ))ξ ξ ξ ξ , q k cosx F ϕ= ′ , and
F , , 2 sin sin /2 cos cos1γ θ ϕ γ γ θ ϕ θ ϕ( ) = ( + − )− . The transmission
becomes unity T 1sz =η for q d nx π= , n 1, 2,= …, regardless of the
values of the angles θ and ϕ as in graphene. On the other hand, for
normal incidence we have 0θ ϕ= = , the transmission acquires the
form
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−

and is less than unity. Apart from notation Eq. (9) is the same as
that of Ref. [13] and for M 0zλ′ = = we have 1γ = and T 0 1sz ( ) =η as
in graphene independent of the values of q dsin x

2( ).
With G e k W h/2F0

2 π= , the conductance due to a particular spin
and valley is given by
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where W is the width along the y direction. In Fig. 2(a) we show the
total conductance gc (black curve) and its spin-up (red dotted curve)
and spin-down (blue dotted curve) components as functions of the
barrier width d of the FM junction. The Fermi energy was taken to be
E 0.9 eVF = and the exchange energy M 50 meVz = . As expected the
conductances oscillate with the barrier width d but the oscillations
are denser for spin-down conductance. In Figs. 2(b) and (c) we plot
the spin polarization P g g g g/s = ( − ) ( + )↑ ↓ ↑ ↓ and valley polarization
P g g g g/v K K K K= ( − ) ( + )′ ′ versus the width d. All other parameters are
the same as those for Fig. 2(a). Ps exhibits an oscillatory behavior
while the height of the peaks tends to decrease with d. As shown, Pv
is of the same order of magnitude as Ps, visibly non-monotonic, and
rather irregular.

Further, in Fig. 3 we show the total conductance gc versus the
ratio M/λ′ for fixed barrier width d¼25 nm. In general the con-
ductance oscillates with M, while there is a sharp decline at
around M 1.75λ= ′. Similar oscillations, but narrowing with M
appear in Ps before it becomes perfect for a wide range of M while
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Fig. 2. (a) Total (black curve), spin-up (red dashed curve) and spin-down (blue dotted curve) conductances versus the width d of the FM layer. (b) Spin polarization Ps and
(c) valley polarization Pv versus the width d for E 0.9 eVF = and M 50 meVz = . (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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Pv oscillates with M and is smaller than Ps. We show that in Fig. 4
where we plot Ps (solid curve) and Pv (dashed curve) versus M/λ′
with the left-axis scale for Ps and the right one for Pv.

To check the influence of the Fermi energy on the conductance,
in Fig. 5 we plot gc (black curve), g↑ (red dashed curve), and g↓
(blue dotted curve) as functions of E /F λ′. All curves start around
E 23F λ= , since only then do we have a nonzero propagating wave
vector kx. It can be seen that gc increases rapidly around E 25F λ= .
For larger values of EF the spin-up component tends to reach the
spin-down one, as the field M becomes negligible compared to EF.

Next, we consider two identical FM layers separated by an or-
dinary MoS2 layer of width b. First, in Fig. 6 we present the po-
larization Ps versus the FM layers' width d for fixed b¼50 nm.
Comparing the results with those for the single barrier in Fig. 2(b),
one sees that the shape is similar, a more complex oscillating be-
havior stemming from different Fermi wave vectors for spin-up
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and spin-down electrons. On the other hand, in Fig. 7(a) we plot
the conductance gc and in Fig. 7(b) the polarization Ps versus the
separation b for fixed barrier width d¼50 nm. Both quantities
oscillate with d but for d 3 nm≥ Ps can change sign. Note that
making the change M Mz z→ − will change the role of spin-up and
spin-down electrons, so that the total conductance will remain the
same but Ps will change sign.
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Fig. 7. (a) Conductance gc through a double FM barrier versus their separation b
3. AFM barriers

We consider a monolayer of MoS2 in ( x y, ) plane in the pre-
sence of an intrinsic SOI. Particles in MoS2 obey the 2D, Dirac-type
Hamiltonian
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F is the AFM field and all other symbols have the same meaning as
in Eq. (1). The eigenvalues of Eq. (11) are
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In Fig. 8(a) we show the total conductance gc (black curve), its

spin-up (red dashed curve) and spin-down (blue dotted curve)
components as functions of the width d for E 0.9 eVF = and
F¼75 meV. The total conductance exhibits an oscillating behavior
for d 20 nm> and the local maxima tend to be smaller with the
increase of the width d. In Fig. 8(b) we present the calculated
polarization Ps through the AFM layer versus the width d. As seen,
Ps the polarization is very small for d 5 nm< , while above 20 nm it
saturates to nearly 100%.

As just seen, some results for a single AFM barrier are similar to
those for a FM barrier. The same holds between the results of
Figs. 3–7 and those corresponding to a double AFM barrier and
will not be repeated. We hope that they will be tested by
experiments.
4. Summary and concluding remarks

We reported new oscillations of the conductances and of the
spin (Ps) and valley (Pv) polarizations through single and double
FM or AFM barriers on monolayer MoS2, as functions of the barrier
width or barrier separation. Ps shows a complex oscillating beha-
vior vs barrier width d stemming from different Fermi wave
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vectors for spin-up and spin-down electrons. On the other hand, Pv
is of the same magnitude as Ps and increases with the width d. We
also reported an oscillating behavior of the conductance versus the
field M or F and an increase above a threshold value of the density
or Fermi energy tied to its large mass term Δ′. A similar oscillating
behavior is shown by Ps and a fluctuating one by Pv.

Two remarks are in order about the results. The first concerns
the various oscillations of the conductances and of the polariza-
tions, when the barrier width or barrier separation is varied. We
emphasize that they are different from those of the transmission
resulting from the maxima and minima of the term q dsin x

2( ) in Eq.
(8). Though not shown, this is evident from the integrated trans-
mission in Eq. (10).

Another remark is about the influence of the α and β terms in
Eq. (1). The main results remain qualitatively the same, if we set

0α β= = , but some quantitative changes occur and show the
importance of these terms. Apart from the change in the spectrum
shown in Fig. 1, the oscillations in Pv in Fig. 4 have an amplitude
about a factor of two smaller than those for 0α β= = . Similarly,
the overall conductance versus barrier width increases, for 0α ≠
and 0β ≠ , by nearly a factor of two, cf. Fig. 2, while versus M, cf.
Fig. 3, the changes are more pronounced. We hope that the results
will be tested by experiments.
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