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Quantum magnetotransport properties of a MoS2 monolayer
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We study transport properties of a MoS2 monolayer in the presence of a perpendicular magnetic field B.
We derive and discuss its band structure and take into account spin and valley Zeeman effects. Compared to a
conventional two-dimensional electron gas, these effects lead to new quantum Hall plateaus and new peaks in the
longitudinal resistivity as functions of the magnetic field. The field B leads to a significant enhancement of the
spin splitting in the conduction band, to a beating of the Shubnikov–de Haas (SdH) oscillations in the low-field
regime, and to their splitting in the high-field regime. The Zeeman fields suppress significantly the beating of the
SdH oscillations in the low-field regime and strongly enhance their splitting at high fields. The spin and valley
polarizations show a similar beating pattern at low fields and are clearly separated at high fields in which they
attain a value higher than 90%.
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I. INTRODUCTION

Recent developments in the experimental realization of
two-dimensional (2D) transition-metal dichalcogenides MX2

(M = Mo, W; X = S, Se) have drawn much attention due
to potential applications [1–10]. MoS2 is a semiconducting
material with strong spin-orbit splitting 2λ′ = 150 meV and
a large intrinsic band gap 2� = 1.66 eV. These properties of
MX2 contrast sharply with those of graphene, the first stable
2D material with promising technological applications in
various fields [11], which has a negligible band gap and a very
weak spin-orbit coupling (SOC). MoS2 has the honeycomb
structure of graphene but provides a mass to the Dirac fermions
[5,6,10]. As a consequence, preliminary results indicate a high
potential for valleytronics because the dispersion can be ma-
nipulated in a flexible manner for optoelectronic applications
[6–9]. Spin and valley Hall effects have been predicted in an
experimentally accessible temperature regime [5], the former
arising from the strong SOC and the latter from the broken
inversion symmetry. Some experimental results for MoS2 and
WSe2 [7,8,12,13] suggest that monolayers of MX2 could be
used for integrated valleytronic devices. From a fundamental
point of view, many efforts have focused on different properties
of MoS2 and other group-VI dichalcogenides in the absence
of a magnetic field. To see the effects of such a field and the
corresponding Landau levels (LLs), magnetoptical properties
[14–16] have been theoretically studied.

The integer quantum Hall effect (QHE) of a 2D electron
gas (2DEG)is epitomized by steps in the Hall conductivity
of height 2(n + 1)e2/h where h is the Planck constant, e

the electron charge, and n an integer, and the vanishing
of the longitudinal conductivity (dissipationless current) at
these steps. In graphene [17–19], the QHE plateaus appear
at 4(n + 1/2)e2/h and the fourfold degeneracy is associated
with the spin and valley degrees of freedom. More recently,
the QHE has been assessed for silicene/germanene [20,21]
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in which the SOC rearranges the LLs in two groups and
the plateaus appear at 2(n + 1/2)e2/h due to the valley
degeneracy except for the n = 0 LL in which the fourfold
degeneracy is lifted. Quantum transport measurements to
observe the QHE and Shubnikov–de Haas oscillations (SdH) in
high mobility MoS2 have been performed very recently [22].
Although an unconventional QHE [23] has been predicted
for MoS2 through its band structure, we are aware only of
the limited study of ballistic transport in Ref. [24], i.e., in the
absence of scattering, but not of any detailed magnetotransport
studies that take scattering into account. As clearly stated in
Ref. [24], though, trigonal warping contributes a Zeeman-type
term to the valley splitting but does not affect much the band
structure which depends strongly on the linear term in the
magnetic field B [see Sec. II after Eq. (3)].

In this work, we study quantum magnetotransport through
a monolayer MoS2. We derive and discuss the corresponding
band structure in the presence of a perpendicular magnetic field
and include the spin and valley Zeeman terms. The study of
transport is based on general conductivity expressions, derived
within the linear-response theory [25], and cast explicitly in
terms of single-particle eigenstates and eigenvalues. Using
them, we investigate the influence of a magnetic field on the
spin and valley Hall conductivity, and show that the plateaus
exhibit an unusual sequence. In addition, we evaluate the
longitudinal conductivity, and compare the results with those
for graphene and silicene or germanene.

The paper is organized as follows. In Sec. II, we present the
one-electron eigenstates, eigenvalues, and the corresponding
density of states (DOS). In Sec. III, we evaluate the Hall and
longitudinal conductivities and discuss our numerical results.
Summary and concluding remarks follow in Sec. IV.

II. BASIC MODEL FORMULATION

We consider MoS2 in the (x,y) plane in a perpendicular
magnetic field B. Including two Zeeman terms in the one-
electron Hamiltonian of Ref. [5] [Eq. (3)], we obtain

H = vF (ησx�x + σy�y) + (� − ληs)σz + ληs

+ sMz − ηMv. (1)
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Here, η = ±1 for valleys K and K ′, 2� ≈ 1.66 eV is the
mass term which breaks the inversion symmetry and creates
an intrinsic direct band gap, σx , σy , and σz are the Pauli
matrices, � = p+eA is the 2D canonical momentum with
A the vector potential, vF denotes the Fermi velocity, and
λ = λ′/2 = 37.5 meV is the SOC strength with spin up
and spin down represented by s = +1 and −1, respectively.
Further, Mz = g′μBB/2 is the Zeeman exchange field induced
by ferromagnetic order, g′ the Landé g factor (g′ = g′

e + g′
s),

and μB the Bohr magneton [26]. Also, g′
e = 2 is the free-

electron g factor and g′
s = 0.21 is the out-of-plane factor due

to the strong SOC in MoS2. The last term, Mv = g′
vμBB/2,

breaks the valley symmetry of the levels and g′
v = 3.57

[26]. The Zeeman field energy has been measured in very
recent experiments [27–30] and is theoretically shown to be
approximately 30 meV by first-principles calculations [31].

Using the Landau gauge for the vector potential A =
(0,Bx,0) and diagonalizing the Hamiltonian (1), we obtain
the eigenvalues

Eη,s
n,p = ηsλ + sMz − ηMv + pEη,s

n , Eη,s
n

= [
n�

2ω2
c + �2

ηs

]1/2
; (2)

here, �ηs = � − ηsλ, p = + (−) denotes the electron (hole)
states, ωc = vF

√
2eB/� is the cyclotron frequency, and the

integer n labels the Landau levels (LLs). A simpler expression
for the eigenvalues is obtained by noticing that �ωc � �ηs .
Expanding the square root gives

Eη,s
n,p ≈ (1 − p)ηsλ + sMz − ηMv + p� + pn

�
2ω2

c

2�ηs

. (3)

This is a usual, linear in n and B, LL spectrum. Notice that
in the conduction band the first term in Eq. (3) vanishes,
whereas in the valence band it does not. Using � � ηsλ,
the last term is equal pn(�2ω2

c/2�)(1 + ηλ). This gives a spin
slitting E(s = 1) − E(s = −1) = 2Mz + nηλ(�2ω2

c/�) in the
conduction band and 2ηλ − nηλ(�2ω2

c/�) in the valence band.
The term n(�2ω2

c/2�) ∝ nB is about twice as big as Mz and
much smaller than λ. It is important in the conduction band
but negligible in the valence band in which λ ≈ 150 meV.

The eigenfunctions for the K valley are

�η,s
p,n = eikyy√

Ly

(
η A

η,s
n,p φn

B
η,s
n,p φn−1

)
, (4)

where A
η,s
n,p = [(pE

η,s
n + �ηs)/2pE

η,s
n ]1/2, Bη,s

n,p = [(pE
η,s
n −

�ηs)/2pE
η,s
n ]1/2, and φn is the harmonic oscillator function.

The eigenfunctions for the K ′ valley (η = −1) are obtained
from Eq. (4) by exchanging φn with φn−1. The eigenvalues and
eigenfunctions of the n = 0 LL are

E
+,s
0 = � + sMz − Mv, �

+,s
p,0 =

(
φ0

0

)
, (5)

E
−,s
0 = −(� − sMz − Mv + 2sλ), �

−,s
p,0 =

(
0

φ0

)
. (6)

For a better appreciation of the spectrum given above, one
can contrast it with that for B = 0 given by

Es,η
p = sηλ + p[v2

�
2k2 + (� − ληs)2]1/2. (7)

FIG. 1. Band structure of MoS2 in the absence of a magnetic
field B. The left panel is for the K valley and the right one for the K ′

valley.

Here, p = 1 (−1) denotes the conduction (valence) band, s =
1 (−1) is for spin up (down), and η = 1 (−1) for the K (K ′)
valley. Further, k is the 2D wave vector. This spectrum (7) is
shown in Fig. 1 versus ka where a = 0.319 nm is the lattice
constant.

We present the eigenvalues given by Eqs. (2), as functions
of the magnetic field B in Fig. 2. The top and bottom panels
correspond to the conduction and valence bands, respectively,
for finite spin Mz and valley Mv Zeeman fields. We find the
following: (i) in contrast to the

√
B dependence in graphene

or silicene, the energies of the LLs grow linearly with B. This
is obvious from Eq. (3) which holds well because �ωc � �ηs .
(ii) For Mz = Mv = 0 the spin splitting in the conduction band
comes entirely from the last term in Eq. (3). It is approximately
twice as big as the Mz term and depends linearly on the LL
index n and field B: for n = 5 is 1 meV at B = 10 T and 2
meV at B = 20 T. (iii) As Fig. 2 shows, the energies of the
spin-up (-down) LLs at the K valley are different than those

FIG. 2. Band structure of MoS2 versus magnetic field B including
spin and valley Zeeman fields. The top panel is for the conduction
band and the bottom one for the valence band.
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FIG. 3. Landau levels in MoS2 (conduction band) as functions
of the magnetic field B. The top panel is for Mz = Mv = 0 and the
bottom one for Mz �= 0 and Mv �= 0. The magenta curve shows the
Fermi level vs B.

of the spin down (up) at the K
′

valley and show a spin and
valley polarization in contrast with the zero magnetic field
limit in which they are the same [5]. (iv) For Mz �= 0 and
Mv = 0 the spin splitting in the conduction band for n = 5 is
2.2 meV at B = 10 T and 4.3 meV at B = 20 T, respectively.
(v) In contrast to the B = 0 case [5], the spin splitting in the
conduction band is about 10 meV for B = 30 T (Mz �= 0,
Mv �= 0) and can become larger by increasing B. A 10-meV
spin splitting in the conduction band has been realized in recent
experiments [22]. On the other hand, in the valence band the
spin splitting is 150 meV and is the same as that for B = 0
[5]. (vi) The n = 0 LL is spin and valley degenerate for Mz =
Mv = 0 in the conduction band and spin nondegenerate in
the valence band whereas it is spin nondegenerate for Mz �= 0
in the conduction (� + sMz − Mv) and valence (� + 2sλ −
sMz − Mv) bands due to the additional contribution of Mv .

The Fermi energy is obtained from the electron concentra-
tion nc given by

nc =
∫ ∞

−∞
D(E)f (E)dE = gs/v

D0

∑
n,η,s

f
(
Eη,s

n,p

)
, (8)

where D(E) is the density of states (DOS), with D0 =
2πl2, and gs (gv) is the spin (valley) degeneracy. Further,
f (Eη,s

n,p) = {1 + exp[β(Eη,s
n,p − EF )]}−1, with β = 1/kBT , is

the Fermi-Dirac function. We use gs = gv = 1 due to the
lifting of the spin and valley degeneracies. The DOS is given
in the Appendix.

The magenta solid curve in Fig. 3 shows the Fermi level,
obtained numerically from Eq. (8), as a function of B; the LLs

FIG. 4. Fermi level of MoS2 as a function of perpendicular
magnetic field B at T = 1 K. The upper and lower panels differ
only in the field range (x axis).

shown are the same as those in Fig. 2, i.e., spin and valley
dependent, since the magnetic field lifts the spin and valley
degeneracies of the n � 1 LLs. To appreciate the difference
between the case Mz = Mv = 0, shown in the top panel, and
the case Mz �= 0, Mv �= 0, we replot the spectrum in the lower
panel of Fig. 3, versus the field B, for Mz and Mv = 0. The
additional intra-LL small jumps result from the lifting of the
spin and valley degeneracies; the solid and dashed curves (n �
1) are, respectively, for spins up and spins down in the K valley,
respectively. For the K ′ valley the spins are reversed, e.g., for
n � 1, the spin-up electrons in the K valley have the same
energy as the spin-down ones in the K ′ valley. For n � 1, the
fourfold degeneracy, due to spin and valley, of all LLs is lifted
while the n = 0 LL in the conduction band is valley degenerate.
The Fermi level results in Fig. 3 in the presence of Mz, Mv (Mz,
Mv �= 0) correspond to the fourfold-nondegenerate LLs. This
is also shown separately in Fig. 4 for a clearer understanding.
Another worth noticing feature is the beating of the oscillations
for B fields up to about 10 T with a giant splitting of the LLs
at higher fields due to the spin and valley Zeeman terms. As
we show in the following, such a beating pattern also appears
in the DOS and other transport quantities.

The DOS is evaluated in the Appendix [see Eq. (A2)].
We show it in Fig. 5 as a function of the magnetic field
B for an electron density nc = 5 × 1016 m−2 and a Fermi
velocity vF = 5.3 × 105 ms−1 [22]. We plot the dimensionless
DOS D(EF )/Dc (Dc = gs/v/D0�

√
2π ) in the top and bottom

panels for the conduction band. For low and high fields B we
observe a beating pattern and a splitting of the SdH oscillations,
respectively. Both are due to the closeness of the frequencies
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FIG. 5. Dimensionless density of states as a function of per-
pendicular magnetic field B for a LL width � = 0.1

√
B meV.

The upper and lower panels differ only in the field range (x
axis).

of the spin-up and -down states that result from the splitting
of the LLs due to the SOC. The beating is suppressed at very
low fields and the splitting of the oscillations becomes more
pronounced at high fields. The beating pattern vanishes in the
conduction band in the limit B → 0 since so does the SOC
splitting in this limit [5].

As shown in Fig. 5, the amplitude is modulated by
cos(2πδ/�

2ω2
c ) and nodes occur at δ/�

2ω2
c = ±0.5,±1.5, . . .

[see Eq. (A4)]. We also note that the amplitude modulation
occurs only when both the SOC and the field B are finite.
Further, the threshold magnetic field where beating is seen
depends on both λ and �.

The beating persists in the conduction band for magnetic
fields up to about 10 T. Above this value, it is quenched and the
SdH oscillations are split. This behavior is explained by the
closeness of the oscillation frequencies of the SOC-split LLs.
The magnetic-field-enhanced splitting in the conduction band
mixes the spin-up and -down states of neighboring LLs into
two unequally spaced energy branches. The beating appears
when the subband broadening is of the order of �ωc. For
high magnetic fields, the SOC effects weaken and the beating
pattern is replaced by a splitting of the peaks, which persist
due to the SOC and Zeeman energies.

The giant splitting of the SdH oscillations in the high-
field regime can be understood by the term cos[4π (Gη� +
ηλMz)/�

2ω2
c ] with and without the Zeeman terms Mz and Mv .

Normally this term exhibits SdH oscillations without the terms
Mz and Mv; thus, the giant splitting at high fields is purely
caused by their presence in the Fermi energy and DOS. Noting

that the cyclotron energy is �ωc = 19 meV at B = 1 T, the
observation of the LL splitting and the discussed consequences
require that the temperature and level broadening are smaller
than the splitting due to the SOC.

III. LINEAR-RESPONSE CONDUCTIVITIES

In the linear-response formalism of Ref. [25], the many-
body Hamiltonian of the system is written as H = H0 +
HI − R · F(t), where H0 is the unperturbed part, HI a binary
interaction of electrons, e.g., with impurities or phonons,
−R · F(t) is the interaction of the system with an external time-
dependent field F(t), R = ∑

i ri , and ri the position operator
of electron i. For electrical transport we have F(t) = ÑeE(t),
where E(t) is the electric field. In the representation in which
H0 is diagonal the many-body density operator ρ = ρd + ρnd

has a diagonal (ρd ) and a nondiagonal (ρnd ) part. Accordingly,
the conductivity tensor σμν has a diagonal (σd

μν) and a
nondiagonal (σnd

μν ) part; the full tensor is σμν = σd
μν + σnd

μν ,
μ,ν = x,y.

A. Longitudinal conductivity, polarizations

In general, two mechanisms contribute to the current,
diffusion, and hopping, but usually only one of them is present.
When a magnetic field is present, we have only the hopping
contribution since the diffusive one, involving only diagonal
elements of the velocity operator [25], vanishes. For weak
electric fields and weak scattering potentials the longitudinal
conductivity σd

xx ≡ σxx due to hopping has the form [25]

σxx = e2β

2S0

∑
ζ ζ ′

f (Eζ )[1 − f (Eζ ′)]Wζζ ′(Xζ − Xζ ′)2, (9)

with f (Eζ ) = f (Eη,s
n,p) and S0 = LxLy the area of the sample.

Further, Wζζ ′ is the transition rate between the one-electron
states |ζ 〉 and |ζ ′〉 and e the charge of the electron. For elastic
scattering, we have f (Eζ ) = f (Eζ ′) and conduction occurs
by hopping between the orbit centers Xζ and Xζ ′ , with Xζ =
〈ζ |X|ζ 〉 = �2ky .

At very low temperatures, the dominant scattering mech-
anism is that of electrons scattered by charged impurities in
similar, graphenelike systems (see Ref. [32] for more details).
We model the impurity potential as that of a screened charge
U (r) = (e2/4πεrε0r)e−ksr , where ks is the screening wave
vector, εr the relative permittivity, and ε0 the permittivity of
the vacuum. The Fourier transform of U (r) is then given by
U (q) = U0/(q2 + k2

s )1/2, with U0 = e2/2εrε0. Further, if the
impurity potential is short ranged (of the Dirac δ-function
type), one may use the approximation ks � q and obtain
U (q) ≈ U0/ks . The transition rate is given by

Wζζ ′ = 2πni

S0�

∑
ζ ′

|U (q)|2|Jζζ ′(u)|2 δ(Eζ − Eζ ′)δky,k′
y+qy

(10)

with u = l2(q2
x + q2

y )/2 = l2q2/2 and ni the impurity density.
Jζζ ′(u) = 〈ζ | exp(iq · r)|ζ ′〉 are the form factors and |ζ 〉 ≡
|n,s,η,ky〉. For elastic impurity scattering, we neglect LL mix-
ing, i.e., we take n = n′. Further, we note that σxx = σyy and
that for ks � q we can ignore the factor q2 in U (q). We have

035406-4



QUANTUM MAGNETOTRANSPORT PROPERTIES OF A MoS . . . PHYSICAL REVIEW B 93, 035406 (2016)

FIG. 6. Longitudinal conductivity as function of magnetic field
B for T = 1 K. The upper and lower panels differ only in the field
range (x axis).

(Xζ − Xζ ′)2 = l4q2
y and qy = q sin φ. Since the wave function

oscillates around x0 = l2ky and 0 � x0 � Lx , the sum over ky

gives a factor S0/2πl2 and that over q is evaluated in cylindrical
coordinates. The standard evaluation of |Jζζ ′(u)|2, for n = n′,
gives |Jnn(u)|2 = exp(−u)[|Aη,s

n,p|2Ln(u) + |Bη,s
n,p|2Ln−1(u)]2.

Further, δ(Eζ − Eζ ′) = (2�ηs/�
2ω2

c )δn,n′ . Inserting these fac-
tors in Eq. (9) and evaluating the integral over u, the
longitudinal conductivity can be written as

σxx = e2

h

β niU
2
0

l2k2
s �2ω2

c

∑
n,s,η

�ηsI
η,s
n f

(
Eη,s

n,p

)[
1 − f

(
Eη,s

n,p

)]
,

(11)
where

I η,s
n =

∫ ∞

0
u|Jnn(u)|2du. (12)

The integration in Eq. (12) is carried out using the orthogonal-
ity of the polynomials Ln(u) and their recurrence relation (n +
1)Ln+1(u) − (2n + 1 − u)Ln(u) + nLn−1(u) = 0. It gives

I η,s
n = (2n + 1)

∣∣Aη,s
n,p

∣∣4 − 2n
∣∣Aη,s

n,p

∣∣2∣∣Bη,s
n,p

∣∣2

+ (2n − 1)
∣∣Bη,s

n,p

∣∣4
. (13)

As expected, the conductivity obtained from Eq. (11)
exhibits SdH oscillations when B is varied. We show that
in Fig. 6 for the following parameters [5,22,33]: ni = 1 ×
1013 m−2, μB = 5.788 × 10−5 eV/T, T = 1 K, nc = 5 × 1016

m2, k0 = 1 × 10−7 m−1, vF = 5.3 × 105 m/s, and εr = 7.3
[34]. In contrast with graphene [19] or silicene [21], we find

FIG. 7. Spin Ps and valley Pv polarizations versus magnetic
field extracted from Eq. (11). The parameters are the same as those
pertaining to the Mz,Mv �= 0 curve in Fig. 6.

a beating pattern in the SdH oscillations for a B field up to
about 8 T and a splitting after this value. Figure 6 shows
the SdH oscillations of σxx for zero (black) and finite (red)
Zeeman field energies. For high magnetic fields, the beating
pattern disappears and the SdH oscillations are split (see top
and bottom panels in Fig. 6). It is a giant splitting and in
agreement with the Fermi energy and DOS results shown in
Figs. 3–5. The beating pattern is controlled by the magnetic
field. It occurs when the subband broadening is of the order
of the LL separation �ωc. For high fields B the SOC effects
weaken and the beating pattern is replaced by a splitting of the
magnetoconductivity peaks.

The beating pattern can be understood analytically as
follows. For very low temperatures, one can make the approx-
imation βf (Eη,s

n,p)[1 − f (Eη,s
n,p)] ≈ δ(EF − E

η,s
n,p), in Eq. (11),

broaden the δ function, and carry out the sum over n as outlined
in the Appendix. Then, similar to the case of the DOS, the beat-
ing pattern is described by the two close-in-frequency cosine
terms in Eq. (A3) with the replacement E → EF . We believe
that these results for monolayer MoS2, and presumably other
group-VI dichalcogenides, can be observed by existing exper-
imental techniques [22]. We notice in passing that such a beat-
ing pattern, entirely due to the SOC, has been observed exper-
imentally [35] in the conventional 2DEG and treated theoreti-
cally [36]. In both cases, the LL spectrum is linear in the field
B whereas in graphene or silicene it is proportional to B1/2.

Equation (11) contains all spin and valley contributions to
the longitudinal conductivity. Extracting them from there one
can study the spin Ps and valley Pv polarizations defined by

Ps = σ
K,↑
xx + σ

K ′,↑
xx − (

σ
K,↓
xx + σ

K ′,↓
xx

)
σ

K,↑
xx + σ

K ′,↑
xx + (

σ
K,↓
xx + σ

K ′,↓
xx

) (14)

and

Pv = σ
K,↑
xx + σ

K,↓
xx − (

σ
K ′,↑
xx + σ

K ′,↓
xx

)
σ

K,↑
xx + σ

K,↓
xx + (

σ
K ′,↑
xx + σ

K ′,↓
xx

) . (15)

We plot Ps and Pv versus the field B in Fig. 7; the parameters
are the same as those used for producing the red curve in
Fig. 6. As expected and can be seen, here too we have beating
patterns at relatively low B fields and a clear separation
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between Ps and Pv at strong fields with both attaining more
than 90% above B = 20 T.

B. Hall conductivity and magnetoresistivities

Within linear-response theory, the Hall conductivity σyx is
given by [19,25]

σnd
μν = i�e2

S0

∑
ζ ζ ′

(fζ − fζ ′)vνζζ ′vμζ ′ζ

(Eζ − Eζ ′)(Eζ − Eζ ′ + i�ζ )
, (16)

where vνζζ ′ vμζ ′ζ are the nondiagonal matrix elements of
the velocity operator, μ,ν = x,y, and S0 = LxLy . The sums
run over all quantum numbers of the states |ζ 〉 ≡ |n,s,η,ky〉
and |ζ ′〉 ≡ |n′,s ′,η′,k′

y〉 provided ζ �= ζ ′. Assuming that the
broadening of the LLs is approximately the same for all states,
�ζ = �, we find that imaginary part of Eq. (16) vanishes. To
obtain the most transparent results for σyx , we take � = 0.

In MoS2 there are two inequivalent valleys (K , K ′) in
the Brillouin zone due to the two sublattices and, with finite
Zeeman splitting, the fourfold degeneracy is lifted. In the con-
duction band, this lifting is due to the magnetic field. The ma-
trix elements 〈ζ |vx |ζ ′〉 and 〈ζ ′|vy |ζ 〉 can be obtained using the
Hamiltonian (1), vx = ∂H/∂px , and vy = ∂H/∂py . We obtain
vx = ηvσx , vy = vσy , and, using Eq. (4), the matrix elements

〈ξ |vx |ξ ′〉 = v
(
Aη,s

n,pB
η′,s ′
n′,p′δn′−1,n + Bη,s

n,pA
η′,s ′
n′,p′δn′,n−1

)
, (17)

〈ξ ′|vy |ξ 〉 = −ηiv
(
A

η′,s ′
n′,p′B

η,s
n,pδn′,n−1 − B

η′,s ′
n′,p′A

η,s
n,pδn′−1,n

)
.

(18)

For the K ′ valley n and n′ must be interchanged only in the
Kronecker deltas.

The matrix elements between the n = 0 and the n � 1 LLs
are obtained in a similar way. For the K valley the (n,0) matrix
elements are

〈ξ |vx |ξ ′〉 = vAη,s
n,pδn−1,0,〈ξ ′|vy |ξ 〉 = −ivAη,s

n,pδn−1,0; (19)

those for the (0,n′) ones are given by Eq. (19) upon changing
n′ to n and i to −i. The results for the K

′
valley are obtained

by replacing A
η,s
n,p with B

η,s
n,p.

Since |ζ 〉 ≡ |n,s,η,ky〉, there will be one summation over
ky which, with periodic boundary conditions for ky , gives the
factor S0/2πl2. Now, one needs to sum over all possible
combinations of the matrix elements and for convenience
we write

∑
p,p′ = ∑

+,+ +∑
−,− +∑

+,− +∑
−,+. Here, the

subscript +/− denotes the conduction/valence band and only
the n � 1 LLs are considered. The n = 0 LL is considered
separately. This procedure is detailed in Ref. [19]. The
resulting Hall conductivity is σ̄yx = σyx + �σyx , with

σyx = e2

h

∑
η,s,n=1

(n + 1/2)
{
f

η,s
n,+ − f

η,s

n+1,+ + f
η,s
n,− − f

η,s

n+1,−
}
,

(20)

�σyx = e2

2h

∑
η,s,n=1

η�ηs

{(
f

η,s
n,+ − f

η,s
n,−

)
/E

η,s
n,+

− (
f

η,s

n+1,+ − f
η,s

n+1,−
)
/E

η,s

n+1,+
}
. (21)

The sums in Eq. (20) run from n = 1 to ∞ and the results for
the K and K ′ valleys are obtained by setting η = +1 and −1,

respectively. Then, writing explicitly the sums over s one sees
that the correction terms �σK

yx and �σK ′
yx cancel each other pro-

vided both valleys in the nth LL are occupied; evidently they
do not cancel when only one of the spins or valleys is occupied.

The total contribution of the n = 0 LL, including both spins
and valleys, is

σ 0,η
yx = e2

h

∑
ηs

{
f

η,s

0,+ + f
η,s

0,− − (
f

η,s

1,+ + f
η,s

1,−
)
/2

+ (
f

η,s

1,+ − f
η,s

1,−
)
η�ηs/2E

η,s

1,+
}
. (22)

Note again that the terms η�ηs cancel each other when
summing the valley contributions σ 0,K

yx + σ 0,K ′
yx , due to the

opposite spin states in the two valleys. This reveals that
the conductivity σyx is essentially independent of η�ηs ; that
is, the size of the band gap does not affect the correction
terms �σK

yx in the Hall conductivity. This limit agrees with
the results for gapped graphene or silicene although MoS2

and other group-VI dichalcogenides are different from these
materials due to a strong SOC, a large intrinsic direct band gap,
and an asymmetry between the two bands (for B = 0 the spin
splitting is 0 and 150 meV in the conduction and valence bands,
respectively [5]). In the limit λ → 0, these results reduce to
similar ones for gapped graphene [26] and for graphene in the
limit of � = λ = 0 [17]. In contrast, for �,λ �= 0, as in the
case of MoS2 and other group-VI dichalcogenides, we see a

FIG. 8. Hall conductivity as a function of the magnetic field B

for T = 1 K. The upper and lower panels differ only in the field
range (x axis). For further clarity, the range 5–7 T is shown in the
inset to the upper panel and the range 14–25 T in that to the lower
one. This inset covers the cases Mz = Mv = 0, Mz = 0,Mv �= 0, and
Mz �= 0,Mv = 0.
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FIG. 9. Longitudinal (blue) and Hall (red) resistivities as func-
tions of the magnetic field B for T = 1 K and finite spin and valley
Zeeman fields. The upper and lower panels differ only in the field
range (x axis); the parameters are the same.

huge gap and splitting due to the SOC in both K,K ′ valleys
as discussed in detail below Eq. (7). As shown in Fig. 8, in
addition to the graphene plateaus, that occur at half-integer
values of 4e2/h, we find plateaus at integer values of 4e2/h

as well as at other fractional multiples of 4e2/h, e.g., 2.25 and
2.75 due to the spin and valley terms.

At zero or very low temperatures, the last sum in Eqs. (20)
and (21) has the value 4 or 2 for n = nF depending on
whether the number of filled spin and valley states is four
or two, respectively. The latter occurs when the magnetic field
increases the splitting due to the SOC, splits the LLs, and
allows intra-LL jumps of EF between spin and valley states in
the same LL (cf. Fig. 3). But, for graphene on a hBN substrate,
the gap corresponding to � − ηsλ is constant and the fourfold
degeneracy of the LLs makes this sum always equal to 4 be-
cause the occupation probability is equal for all spin and valley
states. As a result, the additional small jumps of the Fermi level,
clearly seen in the curves of Fig. 3, lead to new steps in the Hall
conductivity σyx of MoS2. In addition, here we have important
features for high magnetic fields, the spin- and valley-induced
steps due to the Zeeman fields (see insets to Fig. 8).

To compare with experimental results [22], we evaluate
the components of the resistivity tensor ρμν , μ, ν = x, y,
from those of the conductivity tensor σμν using the standard
expressions ρxx = σyy /S, ρyy = σxx /S, and ρxy = −σyx /S,
where S = σxx σyy− σxy σyx with S ≈ σ 2

xy = n2
ee

2/B2. The
longitudinal and Hall resistivities are shown in Fig. 9 as
functions of the magnetic field for temperature T = 1 K.

The longitudinal resistivity is obtained from the relation
ρxx = (B/nce)2σxx [19], where nc is the carrier concentration.
We observe extra plateaus in the Hall resistivity due to the SOC
and the two Zeeman terms. We find that the steps between
the plateaus coincide with sharp peaks in the longitudinal
resistivity. In strong magnetic fields, larger than 10 T, we find a
significant splitting of the Hall plateaus and the corresponding
peaks in the longitudinal resistivity due to the spin and valley
Zeeman effects. In contrast, for magnetic fields less than 10 T
we observe a beating pattern of the SdH oscillations. It is
interesting to note that this pattern is similar to that due to the
Rashba SOC in a conventional 2DEG [36]. The predicted SdH
oscillations agree well with recent experiments [22] at high
magnetic fields. The particular features shown here below 10 T
could be tested by more detailed experiments.

IV. SUMMARY AND CONCLUSIONS

We studied quantum magnetotransport properties of a MoS2

monolayer subject to an external perpendicular magnetic field.
At B = 0 the spin splitting energy is zero in the conduction
and 150 meV in the valence band. We showed though that
the magnetic field can enhance it in the conduction band by an
amount ∝nB approximately twice as large as Mz [see text after
Eq. (3) and Fig. 2]. The combined action of the SOC and of
the magnetic and Zeeman fields allows for intra-LL transitions
and leads to new quantum Hall plateaus. Moreover, for fields
B stronger than 10 T, the peaks of the SdH oscillations of
the longitudinal conductivity are doubled whereas for fields
below 10 T a beating pattern is observed similar to that of
a conventional 2DEG [36]. A similar beating pattern is also
exhibited, at low fields, by the spin and valley polarizations. It
is also worth emphasizing their oscillations in the entire range
of the B field covered and their higher than 90% value for
B � 20 T.

The deep minima in the SdH oscillations are accompanied
by Fermi level jumps and the peaks coincide with the usual
singularities of the DOS. We have shown a beating and
splitting of the SdH oscillations in the resistivity, which can
be controlled and enhanced by increasing the magnetic field.
Indeed, the magnetic field enhances the spin splitting in the
conduction band [cf. last term in Eq. (3)], which in turn
enhances the splitting and beating of the SdH oscillations.
The spin and valley Zeeman fields lead to a giant splitting for
strong magnetic fields and the lifting of the fourfold spin and
valley degeneracies. We expect that these results will be tested
by experiments.
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APPENDIX

The density of states (DOS) is given by D(E) =
(1/S0)

∑
n,η,s,ky

δ(E − E
η,s
n,p), where S0 = LxLy is the area

of the system. The sum over ky is evaluated using the

prescription (k0 = Lx/2l2)
∑

ky
→ (Lygsgv/2π )

∫ k0

−k0
dky =

(S0/D0)gsgv , where D0 = 2πl2; gs and gv are the spin and
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valley degeneracies, respectively. We use gs = gv = 1 due to
the lifting of the spin and valley degeneracies. Assuming a
Gaussian broadening of the LLs the DOS becomes

D(E) = gs/v

D0

1

�
√

2π

∑
n,η,s

exp
[−(

E − Eη,s
n,p

)2
/2�2

]
, (A1)

where � = 0.1
√

B meV is the width of the Gaussian distribu-
tion [32].

The sum over n is evaluated with the help of the Poisson
summation formula [37]. The resulting DOS is

D(E) =
∑
η,s

D1

{
1 + 4

∞∑
k=1

(−1)k cos

(
4πk

(Gη − sMz) �ηs

�2ω2
c

)

×e−2(πk��ηs/�
2ω2

c )2

}
, (A2)

where D1 = �ηs/4πv2
�

2 and Gη = E − � + ηMv . The first
term inside the curly brackets is the monotonic part and
the second term the oscillatory part of the DOS. It is
sufficient to retain only the term k = 1 since the k > 1
terms are strongly damped. The oscillatory part leads to a
beating pattern at low fields B and a splitting of the SdH
oscillations at higher B for λ� � E. The pattern is due to
two close-to-each other frequencies due to level splitting and
its nodes occur when the summand in Eq. (A2) vanishes.
Combining the terms for s = +1 and −1 shows that this occurs
for

cos
[
4π (Gη� + ηλMz)/�

2ω2
c

]
cos

[
2πδ/�

2ω2
c

] = 0,

(A3)

where δ = 2(ηλGη + �Mz). The nodes of the second cosine
term occur for

2πδ/�
2ω2

c = (2m + 1)π/2,m integer. (A4)
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[26] A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard,
Phys. Rev. X 4, 011034 (2014).

[27] D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormnyos,
V. Zlyomi, J. Park, and D. C. Ralph, Phys. Rev. Lett. 114, 037401
(2015).

[28] A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis,
and A. Imamoglu, Nat. Phys. 11, 141 (2015).

[29] G. Aivazian, Z. Gong, A. M. Jones, R.-L. Chu, J. Yan, D. G.
Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Nat. Phys.
11, 148 (2015).

[30] Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D.
Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J.
Hone, Z. Li, D. Smirnov, and T. F. Heinz, Phys. Rev. Lett. 113,
266804 (2014).

[31] Y. C. Cheng, Q. Y. Zhang, and U. Schwingenschlögl, Phys. Rev.
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