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We study ballistic transport of Dirac fermions through silicene barriers, of width d, with an

exchange field M and metallic gates above them that provide tunable potentials of height U. Away

from the Dirac point (DP), the spin- and valley-resolved conductances, as functions of U, exhibit

resonances and close to it a pronounced dip that becomes a transport gap when an appropriate elec-

tric field Ez is applied. The charge conductance gc of such a junction changes from oscillatory to a

monotonically decreasing function of d beyond a critical Ez. This change of gc can be used to real-

ize electric-field-controlled switching. The field M splits each resonance of gc in two spin-resolved

peaks. The spin ps and valley pv polarizations of the current near the DP increase with Ez or M and

become nearly perfect above certain of their values. We also show that ps and pv can be inverted

either by reversing the polarity of U or the direction of M. For two barriers, there is no splitting in

gc when the fields M are in opposite directions. Most of these phenomena have no analogs in gra-

phene. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913934]

I. INTRODUCTION

Silicene, a monolayer of silicon atoms forming a two-

dimensional (2D) honeycomb lattice, has been predicted to

be stable1 and several attempts have been made to synthesize

it.2,3 This new material has attracted considerable attention4

due to the fact that it has Dirac cones which are similar to

those of graphene.5 However, contrary to graphene, silicene

has a strong intrinsic spin-orbit interaction (SOI) which to-

gether with its buckled geometry leads to a gap approxi-

mately 1.55 meV wide6,7 in the low-energy Dirac-like band

structure. The buckled structure is a remarkable property of

silicene that graphene does not possess and can facilitate the

control7,8 of its band gap by the application of an external

perpendicular electric field Ez. Accordingly, silicene can

overcome difficulties associated with potential applications

of graphene in nanoelectronics (lack of a controllable gap)

due to the available spin and valley degrees of freedom. This

and its compatibility with silicon-based technology led to

studies of important effects, such as the spin- and valley-Hall

effects,6,9–12 the quantum anomalous Hall effect,8,13 and

spin-valley coupling,14 to name but a few. For a recent

review see Ref. 15.

Spintronics aim to inject, manipulate, and/or use the spin

degree of freedom in electronic devices. In contrast with gra-

phene, the large value of SOI in silicene16 not only can lead to

spin-resolved transport but also to a cross correlation between

the valley and spin degrees of freedom. Furthermore, silicon

has a longer spin-diffusion time17,18 and spin-coherence

length19 compared with graphene,20 thus making silicene

appear more suitable for spintronics applications.

In earlier works, several novel features have been studied,

such as ferromagnetic (FM) correlations21 and resonant trans-

port through double barriers22 in graphene, the anomalous mag-

netoresistance,23 a valley-polarized quantum anomalous Hall

effect in the presence of exchange,24 and the conductance25

across FM strips on the surface of a topological insulator, and

valley and spin transport in FM silicene.26,27 However, several

important effects of the electric and exchange fields on trans-

port of Dirac fermions in FM silicene have not been studied so

far. Contrary to graphene, the field Ez greatly influences the

transport properties of FM silicene because its band structures

near the K and K0 points shift in different ways.13 This makes

possible the control of spin and valley transport.

In this work, we systematically study charge, spin, and

valley transport in silicene with a FM insulator on top of the

sample and a metallic gate above it. The normal metal gate

allows one to control the Fermi level locally and create a tun-

able barrier in silicene. First, we show that the charge con-

ductance gc through the junction can be either an oscillatory

or a monotonically decaying function of the junction width

d. One can interpolate between these two qualitatively differ-

ent behaviours of gc by varying Ez. Second, we show that gc

develops a transport gap with increasing Ez in an interval

symmetric with respect to the Dirac point (DP). The physical

origin of this gap is the fact that Ez acts like an extra

“barrier”: it does so for Ez large enough that transport via

evanescent modes is completely suppressed. Notice that our

subject differs from that of Ref. 28 in which different

exchange fields apply to the two sublattices but no barrier is

present and transport is not considered. Here we study trans-

port properties in the presence of barriers and exchange

fields which are the same for both sublattices and exist only

in the barrier regions. In this way we can control the charge,

spin, and valley conductances and the spin/valley polariza-

tions by varying the barrier parameters and/or the exchange

fields. Our study also differs from that of Ref. 24 which

involves a uniform exchange field and no barriers.

Furthermore, we demonstrate that the presence of the

FM insulator induces exchange splittings in silicene which

are similar to those in graphene.21 Due to the exchange split-

tings, the spin polarization near the DP increases with Ez or

M and becomes nearly perfect above certain of their values.

In addition, the spin and valley polarizations can be inverted

either by changing the gate voltage U from negative to
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positive or by reversing the direction of M. We also study

the case of two magnetic gates a distance b apart. We find

that the spin-up and spin-down conductances become identi-

cal when the exchange fields are in opposite directions and

of equal magnitude resulting in the absence of exchange

splittings. The results constitute a significant extension of

our recent work.29 In particular, the valley polarization in

itself, the spin and valley polarization reversals just stated,

an interpretation of the conductance behaviour vs the field

Ez, with the help of the band structure near the two valleys,

and some other results on single and double barriers are not

part of this work.

The rest of the paper is organized as follows. In Sec. II, we

present the calculation of the spin- and valley-resolved conduct-

ance through a FM junction in silicene and show that the charge

conductance can be controlled with Ez. In Sec. III, we discuss

the effects of the exchange field on the charge, spin, and valley

transport, while in Sec. IV, we present our results for a double

FM junction. Finally, we conclude with a summary in Sec. V.

II. TRANSPORT THROUGH A FERROMAGNETIC
JUNCTION

We study ballistic electron transport across a FM strip in

silicene with a metallic gate above it which extends over a

region of width d (see Fig. 1(a)). The effective Hamiltonian

of low-energy fermions is given by16

Hn ¼ �htFðsxkx � nsykyÞ þ Dnsz
sz þ U � szM; (1)

Here, n¼61 distinguishes between the two valleys, K and

K0; Dnsz
¼ Dz � nszkso, and tF� 5� 105m/s is the Fermi ve-

locity. The first term in Eq. (1) is the familiar Dirac-type

Hamiltonian. The second term describes the intrinsic SOI in

graphene, through kso, and controls the SOI gap through the

perpendicular electric field term Dz¼ ‘Ez with 2‘� 0.46 Å

the vertical separation of the two sublattices that is due to the

buckled structure. The third term represents the barrier potential

due to the gate voltage, and in the last term M is the proximity-

induced exchange field due to a FM film. Furthermore, sz¼61

represents spin-up (") and spin-down (#) states, and si are the

Pauli matrices of the sublattice pseudospin.

A. Tunnelling probability

We assume that the electric field is applied only in

region II, 0< x< d, while Dz¼ 0 in regions I and III. Due to

the translational symmetry along the y axis, the

eigenfunctions of Eq. (1) in regions I, II, and III can be writ-

ten in terms of incident and reflected waves:

WI rð Þ ¼ ei kxxþkyyð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EFEN

p
cFeinh

EN

0
B@

1
CA

þ rnsz
ei �kxxþkyyð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EFEN

p
�cFe�inh

EN

0
B@

1
CA; (2)

WIIðrÞ ¼ ansz
eiðk0xxþk0yyÞ

c0Fein/

�f

0
B@

1
CA

þbnsz
eið�k0xxþk0yyÞ

�c0Fe�in/

�f

0
B@

1
CA; (3)

WIII rð Þ ¼ tnsz
ei kxxþkyyð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EFEN

p
cFeinh

EN

0
@

1
A: (4)

Here, cF ¼ �htFkF and EF is the Fermi energy measured from

the DP. Furthermore, EN¼EFþ nszkso and �f ¼ EF � U

þszM � Dnsz
. The momentum of the incident particle makes

an angle h ¼ arctanðky=kxÞ with the x axis. The correspond-

ing angle inside the barrier is / ¼ arctanðk0y=k0xÞ. We have

also defined

kF ¼ ðk2
x þ k2

yÞ
1=2 ¼ ðE2

F � k2
soÞ

1=2=�htF; (5)

and

k0F ¼ ½ðEF � U þ szMÞ2 � D2
nsz
�1=2=�htF: (6)

Due to the translational invariance along the y axis, the trans-

verse momentum is conserved:

ky ¼ k0y ) kF sin h ¼ k0F sin /: (7)

The transmission amplitude associated with a particular

spin in a particular valley, tnsz
, is determined from the conti-

nuity of the wave function at x¼ 0 and x¼ d, i.e., from

WI(x¼ 0, y)¼WII(x¼ 0, y) and WII(x¼ d, y)¼WIII(x¼ d, y).

The transmission at an angle of incidence h is Tnsz
¼ jtnsz

j2
and has the form

Tnsz
ðhÞ ¼ cos2h cos2/=½ cos2ðk0xdÞ cos2h cos2/

þ sin2ðk0xdÞðaþ a�1 � 2 sin h sin /Þ2=4�; (8)

where a ¼ kF�f=k0FEN and

k0x ¼ ½k02F � k2
F sin2h�1=2: (9)

Note that Tnsz
ðhÞ ¼ 1 for k0xd ¼ np with n integer, independent

of the value of h, as in the case of graphene. However, in con-

trast to graphene, for normal incidence (h! 0 and /! 0), we

find that the transmission depends on the barrier height and

deviates from unity
FIG. 1. Schematic representation of (a) a single and (b) a double FM junc-

tion in silicene.
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Tnsz
ð0Þ ¼ 1=½1þ sin2ðk0xdÞða� a�1Þ2=4�: (10)

We note that for a high barrier and any value of k0xd;
Tnsz
ð0Þ ! 1 for either zero or nonzero Dz and M.

Furthermore, by setting Dz¼ kso¼M¼ 0 we get a¼ 1 and

the well-known graphene result Tnsz
ð0Þ ! 1:

The conductance pertinent to a particular spin in a par-

ticular valley through the barrier is obtained as

Gnsz
¼ G0

ðp=2

�p=2

Tnsz
ðhÞ cos hdh ¼ G0gnsz

; (11)

where G0¼ e2kFW/2ph with W the sample width along the y
direction. The (dimensionless) spin-resolved conductance is

defined as

g"ð#Þ ¼ ½gK"ð#Þ þ gK0"ð#Þ�=2; (12)

the valley-resolved one as

gKðK0Þ ¼ ½gKðK0Þ" þ gKðK0Þ#�=2; (13)

and the charge conductance as

gc ¼ g" þ g# ¼ gK þ gK0 : (14)

Throughout this section, we take EF¼ 40 meV, correspond-

ing to a carrier density ne ’ 5� 10�3/nm2, d¼ 110 nm, and

kso¼ 3.9 meV.

We show g" and g# in Fig. 2 as functions of U/EF for zero

electric and exchange fields, dz¼Dz/kso¼ 0 and m¼M/EF

¼ 0. As can be seen, in the absence of a FM film, g" and g#
are identical because the band structures at both K and K0

points are the same. This holds even for dz 6¼ 0. The spin-

resolved conductance exhibits resonance structure, for a high

barrier or deep well, and oscillates between 2/3 and 1 away

from the DP, see Eq. (17). This is due to the enhanced tunnel-

ing of Dirac fermions near normal incidence. The resonances

are due to quasibound states which exist inside the potential

barrier as in the case of graphene.30 Note also that g"(#) exhibits

a pronounced dip at the DP where the dominant contribution to

transport is mainly due to evanescent modes, as explained in

more detail in Sec. II B. At the DP, we have U/EF¼ 1 and for

kFd � 1, we find that the spin- and valley-resolved conduct-

ance is given as (see Appendix A for details)

gnsz
� ð4p=qÞ1=2e�2kFdjdnsz jerfð ffiffiffiqp Þ; (15)

where q ¼ kFd=jdnsz
j with dnsz

¼ Dnsz
=ðE2

F � k2
soÞ

1=2
and

erf(x) the error function. As can be seen from Eq. (15), trans-

port via the evanescent modes is progressively suppressed

with increasing d or Ez and thus dz.

B. Tuning the conductance

From Eq. (8), we note that for a given h, Tnsz
ðhÞ has an

oscillatory (monotonically decaying) dependence on d pro-

vided k0x is real (imaginary). From Eq. (9), we see that k0x
becomes imaginary whenever k0F becomes imaginary (for kF

real) leading to spatially decaying modes in region II. Since

k0F depends on Dz, one can make k0F imaginary by increasing

the field Ez beyond the critical value Dc
z ¼ nszkso6jEF

�U þ szMj. Thus we find that beyond a critical Dz ¼ Dc
z , the

transmission probability exhibits a monotonically decaying

dependence on d. Consequently, for a thick enough barrier,

one can tune the charge conductance gc (at fixed EF, U, and

M) from a finite value to zero by tuning Dz through Dc
z .

These qualitatively different behaviours of gc for Dz below

and above Dc
z are shown in Fig. 3(a) where we plot gc as a

function of the barrier width d for increasing values of dz. In

general, for each pair (n, sz), there is a separate value of Dz

which yields a decaying behaviour of each Tnsz
. However, gc

exhibits a monotonically decaying dependence on d for the

largest value, Dc
z , for which all four transmissions Tnsz

exhibit

separately such dependence. For this value, the Fermi level

lies in the gap at both K and K0 points, as discussed in the

context of Fig. 4. We used U/EF¼ 2 and M¼ 2.5 meV which

yield the critical value dc
z ¼ Dc

z=kso ¼ 11:9. Note that dz¼ 1

corresponds to Ez¼ 0.17 V/nm. Thus such a junction could

be used as an electric switch. We point out that this effect

has no analogue in graphene. This is due to the fact that in

graphene Dnsz
¼ 0 yielding k0F ¼ jEF � Uj=�htF which cannot

be made imaginary. In graphene, k0x becomes purely imagi-

nary only at the DP where k0F ¼ 0.

In Figs. 3(b) and 3(c), we show g" and g# as functions of

d for dz¼ 7 and dz¼ 10.8, respectively. For dz¼ 7, both g"
and g# oscillate because the lowest values of dz required for

them to exhibit a decaying behaviour are 10.62 and 11.9,

respectively. However, for dz¼ 10.8, g" exhibits a decaying

behaviour, while g# oscillates. The reason is that for

dz¼ 10.8, EF lies in the gap near the K point while it crosses

the spin-down band at the K0 point, see Fig. 4. This is also

the origin of the large spin polarization discussed in Sec. III.

In Fig. 3(d), we show the valley-resolved conductances, gK

and gK0 , for the same value of dz as in (c). It is seen that they

exhibit a similar behaviour, i.e., gK0 oscillates while gK

decays with d.

The tuning of the charge conductance can be understood

from the band structures at the K and K0 points as dz

increases, see Fig. 4. The upper panels are for dz¼ 7 and the

lower ones for dz¼ 10.8. Also, M¼ 2.5 meV. It can be seen

that as the field Ez increases, the spin-split conduction bands

FIG. 2. Spin-resolved conductances g" and g# through a square barrier

(U� 0) or well (U� 0) as functions of U/EF for dz¼Dz/kso¼ 0 and m¼M/

EF¼ 0. Note that g"¼ g# because the band structures at both K points are the

same in the absence of the FM film.
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at both K and K0 points shift upward. For dz¼ 10.8, the bands

at the K point shift so that EF lies in the gap. However, at the

K0 point, EF still crosses the spin-down band. Consequently,

only evanescent modes contribute to g" leading to its monot-

onically decreasing behavior, while the current is entirely

carried by spin-down electrons at the K0 point leading to an

oscillatory behaviour of g#, as shown in Fig. 3(c). If dz is fur-

ther increased above the critical value dc
z ¼ 11:9, EF will be

in the gap at both K and K0 points and both g" and g# and

consequently gc will decay with d.

C. Transport gap

In Fig. 5(a), we show the charge conductance gc as a

function of U/EF, in the absence of a FM insulator, for dz¼ 0

and dz¼ 6. It is seen that gc develops a transport gap as the

electric field increases from zero. It occurs because near the

DP, ðjU=EFj � 1Þ k0F becomes imaginary for small dz, while

away from it higher dz is needed. Away from the DP, the dif-

ference jEF � Uj that appears in k0F becomes larger and

therefore higher dc
z is required to push the conduction bands

upward and make k0F imaginary. Thus, as dz increases (i.e.,

jk0xj increases), the evanescent modes for points away from

the DP are gradually damped out; this creates the transport

gap and the conductance vanishes. From Eq. (6) we see that

for M¼ 0, the gap is described by

1� dF < U=EF < 1þ dF; (16)

with dF ¼ jDnsz
j=EF and is symmetric with respect to the DP.

The transport gap appears in all spin- and valley-resolved

conductances labeled by a particular n and sz. Equation (16)

holds with nsz¼þ1. However, if the electric field points in

the opposite direction, Eq. (16) holds with nsz¼�1 for the

FIG. 3. (a) Charge conductance gc as a

function of the barrier width d for

increasing values of dz. The critical

value is such that dc
z ¼ 11:9 and corre-

sponds to Ec
z ¼ 2:02 V=nm. (b) Spin-

resolved conductances g" and g# versus

d for dz¼ 7. (c) Same as in (b) but for

dz¼ 10.8. (d) Valley-resolved conduc-

tances gK and gK0 versus d for dz¼ 10.8.

FIG. 4. Left panels. Energy dispersion

E as a function of the dimensionless

parameter b ¼ �htFk=kso at the K point,

for two values of dz¼Dz/kso. Right

panels. As on the left but at the K
0

point. Note that for dz¼ 10.8, the

Fermi level (solid, green line) lies in

the gap near the K point but crosses the

spin down band at the K
0

point.
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same reasons mentioned in Sec. II B. Note also that for U/EF

¼ 0, i.e., in the absence of a barrier, gc¼ 2 for dz¼ 0.

However, for finite dz (dashed, red curve), there is no perfect

transmission anymore, indicating that the electric field acts

like an extra “barrier” in this region. We also note that a fi-

nite dz causes a shift in the conductance oscillations.

In Fig. 5(b), we show gc as a function of dz for several

values of U/EF close to the DP. Note that near the DP, U/EF

� 1, gc has a monotonically decaying dependence on dz for

dz> 1. This is because the contribution of evanescent modes

gradually diminishes as dz increases, see Eq. (15). However,

for U/EF¼ 1, gc first increases, reaches a maximum at dz¼ 1,

and then decreases. This maximum occurs because jk0Fj at

the DP decreases with dz and vanishes for dz ! 1, resulting

in smaller jk0xj and, consequently, larger contribution of the

evanescent modes.

The effect discussed above can also be observed when

no barrier is present (U¼ 0) by varying EF for fixed, nonzero

dz. In this case, gc becomes finite only beyond a critical

Ec
F ¼ Dz � kso for which k0F becomes real. For EF < Ec

F,

there are no propagating modes (k0F becomes imaginary) and

the conductance vanishes. This is shown in Fig. 5(c) where

we plot gc as a function of �s¼EF/kso for increasing values

of dz and U¼ 0. As can be seen, below the critical values

�
ð1Þ
s ¼ Ec1

F =kso ¼ 3 and �
ð2Þ
s ¼ Ec2

F =kso ¼ 8, the charge con-

ductance vanishes. We also note that gc¼ 2 when dz¼ 0, as

discussed in Fig. 5(a).

III. INFLUENCE OF THE EXCHANGE FIELD

Below we examine the effects of the exchange field M
on the spin- and valley-resolved conductances. Throughout

this section, we use EF¼ 40 meV and d¼ 110 nm.

A. Spin-resolved conductance

In Fig. 6(a), we show the spin-resolved conductances g",
g#, and the charge conductance gc as functions of U/EF for

m¼M/EF¼ 0.058 and dz¼ 0. This value of m corresponds

to exchange splitting M¼ 2.32 meV. As can be seen, the

effect of M is to shift g" and g# relative to each other result-

ing in a broadening of the dip in gc near the DP. Also, the

shift of g" and g# drastically affects gc for high barriers or

deep wells, i.e., for jU=EFj � 1. Specifically, the relative

shift of g" and g# splits each resonance of gc into two spin-

resolved peaks with smaller amplitude, as will be discussed

in the context of Fig. 7(a).

In Fig. 6(b), we show g", g#, and gc as functions of U/EF

for m¼ 0.058 but for finite dz¼ 6. We note that both g" and

g# develop transport gaps which are also shifted relative to

each other, as expected. We also note that the effect of a fi-

nite dz is to shift the oscillations of gc to the right relative to

those for dz¼ 0 while their amplitudes decrease. This is

shown more clearly in Fig. 6(c) where we plot gc versus U/

EF for m¼ 0.058 and the values of dz used in (a) and (b).

The relative shift of the oscillations in g" and g# is

shown in Fig. 6(d) for the same parameter values as in (a). It

is seen that g" and g# can differ substantially at a given value

of U/EF. We also note that all conductances are periodic

functions of U/EF, see explanation below.

Far from the DP, jU=EFj � 1, we obtain an approxi-

mate analytical expression for the spin- and valley-resolved

conductance (see Appendix B)

gnsz
’ ½jcj � ð1� c2ÞarctanhðjcjÞ�=jcj cos2x; (17)

with x¼kFdgdk;c¼dkcosx=½1�d2
bcos2x�1=2;dk¼½1�ðd2

nsz
=

g2Þ�1=2
, and d2

b¼d2
nsz
=g2. The parameter g is given in Eq.

(A1). Equation (17) is in very good agreement with the exact

numerical calculation of gc (see dashed, red line in Fig.

7(a)). From expression (17), we see that gc is periodic in g
with period p/kFddk, which implies that it is a periodic func-

tion of U/EF for fixed M with period Tu ¼ p�htF=EFddk. It is

also periodic in M/EF with the same period. For the parame-

ter values used in this section, we get Tu¼ 0.235.

FIG. 5. (a) Charge conductance gc as a function of U/EF for dz¼ 0 and dz¼ 6.

Note the appearance of a transport gap for dz¼ 6. (b) gc as a function of dz for

three values of the gate voltage near the DP. (c) gc as a function of �s¼EF/kso in

the absence of a barrier (U¼ 0) for increasing values of dz. k
0
x becomes imaginary

below the critical values �
ð1Þ
s and �

ð2Þ
s and results in a vanishing conductance.
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In Fig. 7(a), we show gc versus U/EF for dz¼ 0 and sev-

eral values of m. The curves are shifted upward in steps of

0.5. The dashed (red) line is calculated using the approxi-

mate expression (17) for m¼ 0. As can be seen, as m
increases, each peak of gc gradually splits into two spin-

resolved peaks, a distance 2 m apart, of much smaller ampli-

tude. This was also noted in the case of graphene.21 As

shown in Fig. 7(b), by further increasing M, such that

m¼Tu/2, the two spin-resolved peaks merge again to form

one peak of large amplitude as in the case of m¼ 0.

However, the peaks are now shifted by Tu/2 on the U/EF axis

relative to those for m¼ 0. For m¼ 3Tu/4, the peaks resolve

again and become similar to those for m¼ Tu/4 shown in (a).

For m¼Tu, the spin-resolved peaks merge again but are also

shifted by Tu on the U/EF axis, i.e., they coincide with those

for m¼ 0.

In Fig. 7(c), we show gc as a function of m for several

values of U/EF which are close to the first peak in (a). Note

the periodic variation of gc as m increases with period Tu.

We also note that for m¼Tu/2� 0.117, there is a minimum

in gc, whereas, as shown in (b), the two spin-resolved peaks

merge to one of large amplitude. This minimum corresponds

to the first minimum in gc for m¼Tu/2 in (b). Thus, a split-

ting of the conductance peaks occurs at the maxima of gc vs

m. This finding could be useful for the experimental determi-

nation of the exchange field for which proximity-induced

splittings can be observed in ferromagnetic silicene.

B. Valley-resolved conductance

In Fig. 8(a), we show the valley-resolved conductances

gK; gK0 , and the charge conductance gc ¼ gK þ gK0 as func-

tions of U/EF for dz¼ 6 and m¼ 0.04. Contrary to the spin-

resolved conductance, in the barrier (well) region, the field

M splits the resonances of gK and gK0 into spin-resolved

peaks of smaller amplitude. The splitting of the peaks of gK0

in the barrier region is shown more clearly in Fig. 8(d),

where we plot gK and gK0 versus U/EF for the same

parameter values as in (a). This is due to the fact that the val-

ley symmetry is broken when m 6¼ 0, which implies that the

bands at K and K0 points shift in a different way as dz

increases resulting in spin-resolved transport in one valley

but not in the other.

In Fig. 8(b), we show gK; gK0 , and gc as functions of

U/EF for dz¼ 6 and m¼ Tu/4¼ 0.058. In this case, the shift

of gK and gK0 relative to each other is such that it causes

splitting of the peaks of gc, which is similar to that in Fig. 6.

This is shown more clearly in Fig. 8(c) where we plot gc as a

function of U/EF for m¼ 0.04 and Tu/4 corresponding to (a)

and (b).

C. Spin polarization

As usual, the spin polarization ps is defined as

ps ¼ ðg" � g#Þ=ðg" þ g#Þ: (18)

For 0< ps� 1, the transmitted current is spin-up polarized,

while for� 1� ps< 0, its polarization is reversed.

In Fig. 9(a), we show the spin polarization ps as a func-

tion of U/EF for m¼ 0.22 and increasing values of dz. It is

seen that ps becomes more pronounced with increasing dz.

This is mainly due to the fact that the spin-split conduction

bands in the ferromagnetic region shift in a different way at

the K and K0 points with increasing dz, i.e., they shift upward

faster at one valley than at the other one. Thus, for large dz,

only a single spin band contributes to the current giving rise

to large spin polarization. In addition, ps becomes more pro-

nounced because the evanescent modes are gradually sup-

pressed as dz increases. For sufficiently large dz, the charge

current becomes fully spin-polarized with spin-up electrons

below the DP and spin-down electrons above it. The change

of sign in ps is directly related to the relative shift of the con-

ductances g" and g#. Thus, the spin current can be controlled

by the electric field and ps can be inverted by changing the

gate voltage U from negative to positive.

FIG. 6. (a) Spin-resolved conductances

g" and g#, and charge conductance

gc¼ g"þ g# as functions of U/EF for

dz¼ 0 and m¼ 0.058. (b) The same as

in (a) but for dz¼ 6. (c) gc as a function

of U/EF for m¼ 0.058, and the values

of dz used in (a) and (b). (d) g" and g#
as functions of U/EF for the same pa-

rameters as in (a).
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The spin polarization can also be controlled by varying

the exchange field. This is shown in Fig. 9(b) where we plot

ps versus of U/EF for dz¼ 5 and increasing values of m. As

in (a), fully spin-polarized current can be achieved for suffi-

ciently large m, which is a consequence of the broken valley

symmetry. In passing, we note that ps becomes more pro-

nounced with increasing width d.26

The spin polarization can also be tuned by changing the

direction of the exchange field from positive to negative.

This is shown in Fig. 10(a) where we plot ps as a function of

U/EF for dz¼ 8 and m¼60.22. As can be seen, ps is

inverted by simply reversing the direction of the exchange

field. For m¼ 0.22, the transmitted current is spin-up (spin-

down) polarized below (above) the DP, while for m¼�0.22,

it becomes spin-down (spin-up) polarized. In Fig. 10(b), we

show the valley polarization pv ¼ ðgK � gK0 Þ=ðgK þ gK0 Þ as

a function of U/EF for the same parameter values as in (a). It

is seen that the sign of pv can also be switched by reversing

the direction of m. However, the regions of near-perfect val-

ley polarization are shorter than those of ps. In Fig. 10(c), we

show ps as a function of m for U/EF¼61.7 and dz¼ 8. It is

seen that as m changes sign, the spin polarization also

changes sign. Above (below) the DP (U/EF¼61.7), ps

becomes negative (positive) as m becomes positive. As men-

tioned above, this is directly related to the relative shift of

the conductances g" and g#. This is shown in Figs. 10(d) and

10(e), where we plot g" and g#, as functions of U/EF, for

m¼ 0.06 and �0.06, respectively. For m¼�0.06, the shift

of g" and g# relative to each other is opposite to that for

m¼ 0.06. As a result, the sign of ps changes when m is

reversed. Similar considerations hold for pv. These findings

could be used to realize a silicene-based, high-efficiency

spin- and valley-filter.

IV. DOUBLE FERROMAGNETIC JUNCTION

In this section, we study a double ferromagnetic junction

shown schematically in Fig. 1(b). The magnetic gates, both

of width d and a distance b apart, extend over regions II and

IV, We assume that Ez is applied only in these regions and

vanishes everywhere else.

The eigenfunctions are of the same form as those for a

single ferromagnetic junction (see Sec. II A). In regions I,

III, and V, kF is given by Eq. (5) and k
ðiÞ
F in regions II and IV

by Eq. (6) with k0F ! k
ðiÞ
F . Also, similar to Eq. (7), we now

have ky ¼ k
ðiÞ
y ) kF sin h ¼ k

ðiÞ
F sin /i; i ¼ II, IV, where

h ¼ arctanðky=kxÞ is the angle that the incident particle makes

with the x axis, and /i ¼ arctanðkðiÞy =kðiÞx Þ the angle inside the

first or second barrier. Applying the continuity of the wave

function at the interfaces leads to a system of eight equations

with eight unknowns which are solved numerically to obtain

the transmission. We also defined the longitudinal momenta

as in Eq. (9), that is, kðiÞx ¼ ½ðk
ðiÞ
F Þ

2 � k2
F sin2h�1=2; i ¼ II, IV.

In the numerical calculation, we used d¼ 100 nm, b¼ 50 nm,

and EF¼ 40 meV. We also set dz ¼ dð1Þz ¼ dð2Þz the common

value of the electric field in the two regions.

In Fig. 11, we show the charge conductance gc as a func-

tion of the barrier width d for increasing values of dz. We

used U1/EF¼ 2, U2¼U1, and the same exchange fields

mi¼Mi/EF¼ 0.063, i¼ 1, 2. We find that gc decays expo-

nentially with d beyond a critical value of dz, as in the case

of a single barrier. In fact, the expression for the critical dc
z is

the same as that for a single barrier. We note that it is suffi-

cient to increase either dð1Þz or dð2Þz above dc
z in order to

observe the exponentially decaying behaviour of gc. For the

parameters used here, the critical value is dc
z ¼ 11:9, the

same as for a single barrier. We also note that a near-zero

transmission is achieved faster because the two barriers to-

gether increase the effective width. Below dc
z ¼ 11:9, gc

remains oscillatory; however, the oscillation patterns are

more complex.

In Fig. 12(a), we show g" as a function of V/EF for two

values of dz. We take U1¼U2¼V, i.e., the barriers have

equal heights, and vanishing exchange fields, m1¼m2¼ 0.

In this case, g#¼ g". We note that for dz¼ 0, g" is almost

FIG. 7. (a) Charge conductance gc versus U/EF for dz¼ 0 and several values

of the exchange field m. The curves are shifted upward in steps of 0.5. The

dashed (red) curve is computed using the approximate expression (17). (b)

gc versus U/EF for m¼ 0 and Tu/2. (c) gc versus m for three values of U/EF

close to the first peak in (a).
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zero at V/EF� 1. This occurs because the two barriers to-

gether increase the effective width which causes a drastic

suppression of transport through the evanescent modes.

Also, increasing dz from zero leads to a transport gap similar

to that for a single barrier. It has the same form as that for a

single barrier and be found from an equation similar to Eq.

(16) with the change k0F ! k
ðiÞ
F . We also note that the oscilla-

tory pattern is the same as that for a single barrier but, for

dz¼ 0, it becomes slightly irregular in the barrier region.

In Fig. 12(b), we show the charge conductance gc as a

function of �s¼EF/kso for V¼ 0, vanishing exchange fields

m1¼m2¼ 0, and increasing values of dz. We note that gc¼ 2

for dz¼ 0, as expected. We also note that gc vanishes below

a critical value of the Fermi energy, i.e., for �s < Ec
F=kso

where Ec
F ¼ Dz � kso, for which k

ðiÞ
F becomes imaginary, as

in the case of a single barrier.

For barriers (wells) of unequal height (depth), the con-

ductance has a richer structure. In Fig. 12(c), we show g"
as a function of V/EF for U1¼V with U2¼ 1.2 V (solid,

blue curve) and U2¼ 0.8 V (dashed, red curve). The elec-

tric and exchange fields are taken to be zero. First, it is

seen that the dips are broadened and shift away from the

DP. Second, the oscillation pattern in the barrier region

becomes more complex and irregular. We also observe a

beating pattern with progressively larger oscillations with

increasing depth of the wells. We attribute the beating to

the interference of Dirac fermions with slightly different

energy due to the asymmetry of the two wells. This pattern

is similar to that found for asymmetric electrostatic wells

in graphene.31

In Fig. 12(d), we show g", g#, and gc as functions of V/

EF for U2¼ 1.2U1. The electric and exchange fields are such

that dz¼ 6 and m1¼m2¼ 0.05. It is seen that both g" and g#
exhibit beating patterns in the well region. Also, the relative

shift of g" and g# leads to irregular oscillations of gc, espe-

cially in the barrier region, which cannot be used to deter-

mine the exchange splittings.

We demonstrate now the effect of the exchange fields

on the spin-resolved and charge conductances. In Fig. 13(a),

we show g", g#, and gc as functions of V/EF for dz ¼ dð1Þz

¼ dð2Þz ¼ 6; m1 ¼ m2 ¼ 0:05, and for barriers of equal height

U1¼U2¼V. As can be seen, the exchange fields shift g"
and g# relative to each other resulting in splitting of the

peaks in the charge conductance, as in the case of a single

barrier. However, the amplitudes of the oscillations in g"
and g# become much larger than those for a single barrier

FIG. 8. (a) Valley-resolved conductan-

ces gK and gK0 , and charge conduct-

ance gc as functions of U/EF for dz¼ 6

and m¼ 0.04. (b) The same as in (a)

but for m¼Tu/4. (c) gc vs U/EF for

dz¼ 6 and the values of m used in (a)

and (b). (d) Valley-resolved conduc-

tances gK, gK0 , as functions of U/EF for

the same parameters as in (a).

FIG. 9. (a) Spin polarization ps as a function of U/EF for m¼ 0.22 and

increasing values of dz. (b) The same as in (a) but for fixed dz¼ 5 and several

values of m.
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(see Fig. 6(b)). This is also reflected in the oscillations of gc

which are also slightly irregular.

In Fig. 13(b), we show g", g#, and gc as functions of V/

EF with the exchange fields in opposite directions, m1¼ 0.05

and m2¼� 0.05. Interestingly, we find that g" becomes iden-

tical to g#, i.e., the exchange fields do not shift g" and g# rela-

tive to each other. It is as if the exchange fields have

opposite effects. This is due to the particular combination of

Mi and sz which enters the wave vectors k
ðiÞ
F . Specifically, the

effect of a positive Mi on spin-up electrons is identical to

that of a negative Mi on spin-down electrons, i.e., szMi is pos-

itive in both cases. This explains the equality g"¼ g# and the

absence of splitting in gc. The absence of splittings leads to

zero spin polarization through the double junction. At the

same time, we note that the amplitudes of the oscillations in

g" and g# are strongly suppressed.

FIG. 10. (a) Spin polarization ps as a

function of U/EF for dz¼ 8 and

m¼60.22. Note that ps is inverted

when the direction of the exchange

field is reversed. (b) The same as in (a)

but for the valley polarization pv. (c)

Spin polarization ps as a function of m
for U/EF¼61.7. (d) Conductances g"
and g# as functions of U/EF for

m¼60.06.

FIG. 11. Charge conductance gc as a function of the barrier width d for

increasing values of dz. The critical value is dc
z ¼ 11:9 and m1¼m2¼ 0.063.

FIG. 12. (a) Spin-up conductance g" as

a function of V/EF with U1¼U2¼V
and m1¼m2¼ 0. (b) Charge conduct-

ance gc as a function of �s¼EF/kso for

V¼ 0 and increasing values of dz. (c)

g" versus V/EF for U1¼V, two values

of U2/U1, and dz¼m¼ 0. (d)

Conductances g", g#, and gc versus V/

EF for dz¼ 6 and m1¼m2¼ 0.05.
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V. SUMMARY

We studied ballistic transport through silicene single

or double ferromagnetic junctions and showed that they ex-

hibit novel phenomena that are distinct from their counter-

parts in graphene. In particular, we showed that the charge

conductance gc can be tuned by an external perpendicular

electric field Ez. Above a critical Ez, gc changes from an

oscillatory to a monotonically decreasing function of

the junction width d. We also showed that gc develops a

transport gap with increasing Ez. These novel features

could be used for the realization of electric-field-controlled

switching.

Furthermore, it was shown that the presence of the fer-

romagnetic insulator induces exchange splittings in the

peaks of gc, and gc is a periodic function of the barrier

potential U and of the exchange field M. The periodicity of

gc in M offers an alternative method for the experimental

determination of M for which exchange splittings can be

observed. Importantly, fully spin-polarized current can be

achieved near the Dirac point for sufficiently large Ez or M.

The spin and valley polarizations can be inverted by chang-

ing either the gate voltage U, from negative to positive, or

by reversing the direction of M. As for the value

M¼ 2.32 meV, it is a little lower than that reported for gra-

phene.21 These findings could be used to realize a high effi-

ciency silicene-based spin and valley filters. We have also

verified numerically, using the finite-temperature version of

Eq. (11), that our results are not affected for temperatures

up to T� 120 K provided scattering by phonons or impur-

ities is negligible.

For a double ferromagnetic junction, we showed that

gc can also be tuned by Ez. Furthermore, for wells with

unequal depths, we found that the conductance exhibits a

beating pattern which is attributed to interference effects

of Dirac fermions with slightly different energies. The

directions of the magnetizations play a significant role.

Specifically, when the exchange fields in the two junctions

are in opposite directions but have equal magnitudes, the

g" conductance becomes identical to the g# one and there is

no exchange splitting in the charge conductance gc. We

expect that our results will be tested by appropriate

experiments.
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APPENDIX A: CONDUCTANCE AT THE DIRAC POINT

The dip in the conductances g", g# shown in Fig. 2 origi-

nates from the dominant contribution of evanescent modes

near the DP. As a result, the conductance is suppressed and

can be made to vanish by increasing either the barrier width

d or the electric field. In the first case gnsz
! 0 because d

increases while, in the second case, jk0xj increases [see Eqs.

(6) and (9)]. In order to show this, it is convenient to intro-

duce the dimensionless variable

g ¼ ½EF � U þ szM�=½E2
F � k2

so�
1=2

(A1)

as a measure of the gate voltage U. By setting u ¼ sin h the

transmission probability (8) takes the form

Tnsz
ðuÞ ¼ ð1� u2Þðg2

d � u2Þ=fð1� u2Þðg2
d � u2Þ cos2ðk0xdÞ

þð1=4Þ sin2ðk0xdÞ½pþ g2
dp�1 � 2u2�2g; (A2)

where gd ¼ ðg2 � d2
nsz
Þ1=2 ; dnsz

¼ Dnsz
=ðE2

F � k2
soÞ

1=2
and

p ¼ ½gðE2
F � k2

soÞ
1=2 � Dnsz

�=EN . The longitudinal momenta

in the barrier region k0x can be expressed as

k0x ¼ kF½g2
d � u2�1=2: (A3)

In the following we set M¼ 0 in Eq. (A1) for simplicity. At the

DP, i.e., for g¼ 0 in Eq. (A2), we get pþ g2
dp�1 � 2u2 � �2u2

assuming EF� kso. Also k0x ¼ ikFda with da ¼ ðd2
nsz
þ u2Þ1=2

.

For kFd� 1 and d2
nsz
þ u2 � d2

nsz
we obtain

Tnsz
ðuÞ � 4e�2kFdda : (A4)

From Eq. (A3) it can be seen that k0x can be either real ðg2
d >

u2Þ or purely imaginary ðg2
d < u2Þ, corresponding to propa-

gating and evanescent modes, respectively. For jgdj < 1, the

conductance can be split into the contributions from propa-

gating and evanescent modes,

gnsz
¼
ð1

0

duTnsz
ðuÞ

¼
ðjgdj

0

duTnsz
ðuÞ þ

ð1

jgdj
duTnsz

ðuÞ ¼ gprop
nsz
þ gevan

nsz
:

(A5)

From Eq. (A5) it is seen that the contribution to the conduct-

ance from the evanescent modes becomes dominant in the

region near gd¼ 0. In fact gd¼ 0 gives the critical electric

FIG. 13. (a) Spin-resolved conductan-

ces g" and g#, and charge conductance

gc as functions of V/EF for U1 ¼ U2;
dð1Þz ¼ dð2Þz ¼ 6, and m1¼m2¼ 0.05.

(b) The same as in (a) but for

m1¼ 0.05 and m2¼�0.05.
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field Dc
z ¼ nszkso6jEF � U þ szMj mentioned in Sec. II B.

Inserting Eq. (A4) into Eq. (A5) and using da � jdnsz
j þ u2=

2jdnsz
j we find

gnsz
� ð4p=qÞ1=2e�2kFdjdnsz jerfð ffiffiffiqp Þ; (A6)

where q ¼ kFd=jdnsz
j; erf(x) is the error function. Equation

(A6) is in very good agreement with the exact numerical cal-

culation presented in Fig. 4(b) as long as dnsz
	 Dnsz

6¼ 0. It

can be seen that, for any spin or valley index, gnsz
exhibits a

monotonically decaying dependence on dz as long as dz> 1.

It also exhibits a similar dependence on the width d of the

barrier for fixed dz.

APPENDIX B: CONDUCTANCE FOR STRONG
POTENTIALS

For high barriers or deep wells, jgj � 1, using u2� 1 we

have u2/g2! 0. Also in Eq. (A2) we have

pþ g2
dp�1 � u2 ’ 2g; (B1)

where we assumed that EF � kso. Also k0xd ’ kFdgdk with

dk ¼ ½1� ðd2
nsz
=g2Þ�1=2

. Then, with d2
b ¼ d2

nsz
=g2 and x¼ kF

dgdk, Eq. (A2) takes the form

Tnsz
uð Þ ’

1� d2
b þ u2 � d2

bu2
� �

1� d2
b þ u2 � d2

bu2
� �

cos2x
: (B2)

Inserting Eq. (B2) in Eq. (A5) we get

gnsz
’ jcj � 1� c2

� �
arctanh jcjð Þ

jcj cos2x
; (B3)

where c ¼ dk cos x=½1� d2
b cos2x�1=2

. We notice that this

gnsz
is periodic in the variable g with period p/kFddk.

Equation (B3) is in very good agreement with the exact nu-

merical calculation for either zero or finite dz and M.
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