
PHYSICAL REVIEW B 90, 235423 (2014)

Integer and half-integer quantum Hall effect in silicene: Influence of an external
electric field and impurities
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The influence of silicene’s strong spin-orbit interaction and of an external electric field Ez on the transport
coefficients are investigated in the presence of a perpendicular magnetic field B. For finite Ez the spin and valley
degeneracy of the Landau levels is lifted and leads to additional plateaus in the Hall conductivity, at half-integer
values of 4e2/h, due to spin intra-Landau-level transitions that are absent in graphene. These plateaus are more
sensitive to disorder and thermal broadening than the main plateaus, occurring at integral values of 4e2/h, when
the Fermi level passes through the Landau levels. We also evaluate the Hall and longitudinal resistivities and
critically contrast the results with those for graphene on a substrate.
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I. INTRODUCTION

Recent progress in the exfoliation of bulk layered materials
has facilitated the realization of ultrathin two-dimensional
(2D), one-atom-thick layers that exhibit novel properties. The
silicon analog of graphene, called silicene, is a new 2D material
that has been predicted to be stable [1] and has currently
been synthesized on a Ag(111) or MoS2 surface [2,3]. Though
there is some controversy as to how its free-standing version
can be really synthesized [4], it has attracted a great deal of
attention [5–7] because, contrary to graphene, it has a strong
spin-orbit interaction (SOI). In addition, the Dirac cones in
silicene are similar to those of graphene. This similarity results
from the fact that carbon and silicon belong to the same column
in the periodic table of elements.

The strong SOI of silicene is predicted to open a gap with a
width of approximately 1.55 meV [5] between the low-energy
Dirac-like cones, which is appropriate for the observation of
the quantum spin-Hall effect. It has also been predicted that the
created gap can be tuned [6] by applying an external electric
field Ez perpendicular to the silicene sheet. The tunability of
the band gap is a consequence of the buckled structure, with
one of the two sublattices of the honeycomb lattice shifted
vertically with respect to the other [see Fig. 1(a)]. Recent
density-functional theory calculations predicted that silicene
should exhibit a quantum spin-Hall effect at an accessible
temperature [5]. These and many other properties, reviewed
in Ref. [7], together with silicene’s compatibility with silicon-
based nanoelectronic technology, make silicene a promising
material for applications. Encouraging in this direction is the
very recently reported local formation of high-buckled silicene
nanosheets on a MoS2 surface [3].

So far most of the works on silicene study its properties
in the absence of a magnetic field B. But it is of interest to
know how silicene’s strong SOI affects its magnetotransport
properties. One might expect that the results are similar to those
for graphene on a substrate [8,9], which creates a gap � in the
single-particle spectrum, but this is not the case. The reason
is that the equivalent quantity to � in silicene depends on the
spin and valley degrees of freedom [10] when a perpendicular
electric field Ez is present.

Our previous work [10] pertains only to periodically
modulated silicene in very weak magnetic fields and addresses
the commensurability oscillations, but almost neglects the
Shubnikov–de Haas oscillations that usually start at B ≈ 0.6 T.
We now address the effect of a homogeneous perpendicular
electric field on silicene’s magnetotransport properties when
a strong quantizing magnetic field is present. We derive an
analytic expression for the Hall conductivity and show that
the application of a perpendicular electric field Ez doubles
the Shubnikov-de Haas oscillations, resulting in integer and
half-integer conductivity plateaus. We also evaluate the Hall
and longitudinal resistivities and critically contrast the results
with those for graphene on a substrate.

In Sec. II we present one-electron properties and the
relevant conductivities. The evaluation of the latter is carried
out in some detail in Sec. III. In Sec. IV we summarize our
results. Finally, in the Appendix we outline the derivation of
the Hall conductivity.

II. FORMALISM

A. One-electron attributes

The effective Hamiltonian of buckled structures of group-
IV A elements such as silicene has already been de-
rived [6,11] by combining first-principles calculations with
a tight-binding treatment. Since the nearest- and next-nearest-
neighbor Rashba SOIs, denoted as λR1 and λR2 in Ref. [6], are
negligible compared to the intrinsic SOI, λso, we omit them in
the calculations. Using this assumption one renders the 4 × 4
matrix Hamiltonian into two 2 × 2 block-diagonal ones, in
terms of the spin index sz = ±1 (for an analytic justification
see, e.g., Ref. [12]), whose form in the presence of a magnetic
field B is

Hξ = vF [τx�x − ξτy�y] − (ξszλso − e�Ez)τz. (1)

Here vF is the Fermi velocity, τi (i = x,y,z) the corresponding
Pauli matrices of the sublattice pseudospin, 2� the vertical
distance between the two sublattices, ξ = ±1 the valley index,
and � = p + eA. Substituting the τi matrices in Eq. (1)
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FIG. 1. (Color online) (a) Buckled structure of silicene. (b) The
spin-split energy spectrum of silicene, for the K valley, subject to a
perpendicular electric field Ez = 12 mV/�. The bold solid (dashed)
curves indicate the energy dispersion in the absence of a magnetic
field for spins up (down). The horizontal lines show the split LLs for
B = 2 T.

yields

Hξ =
[

esz,ξ vF �±
vF �∓ −esz,ξ

]
, (2)

where esz,ξ = −ξλsosz + e�Ez and �± = �x ± i�y . Equa-
tion (2) is identical in form with Eq. (1) of Ref. [8] and Eq. (2)
of Ref. [9] that describe graphene on a substrate: simply e0 of
Ref. [8] or � of Ref. [9] is replaced by the tunable parameter
esz,ξ that depends on ξ , sz, and Ez whereas e0 and � do not.
The most straightforward consequence of this dependence is
that the band gap between the conduction and valence bands is
tunable by the electric field Ez, as shown in Fig. 1(b), and more
importantly the gap size is different for opposite spins [13].

Taking the magnetic field perpendicular to the silicene
sheet, �B = Bêz, we can write the vector potential in the
Landau gauge �A = (−By,0,0), use the wave function in
the ansatz �(x,y) = eikxxψ(y)/

√
Lx , and obtain the kinetic

momentum as π± = �(kx ± ∂y − y/�2
c) where �c = √

�/eB is
the magnetic length. Then, the eigenvectors and eigenvalues of
Eq. (2) are obtained in a standard manner by solving the secular
equation (H − EI )� = 0, where I is the identity matrix. The
eigenvalues are

Eλξ
nsz

= λ
[
�

2ω2
cn + e2

sz,ξ

]1/2
, (3)

where ωc = √
2vF /�c is the cyclotron frequency; the nonneg-

ative integer n labels the Landau levels (LLs) and the factor
λ = 1(−1) the electron (hole) states for n � 1. Notice that for
n = 0 either K or K ′ valley involves only one solution and the
λ dependence disappears:

E
ξ

0sz
= ξ esz,±. (4)

For ξ = 1 and n � 1 the eigenvectors �
λξ
nsz

(r,kx) are

�λ1
nsz

(r,kx) = 1√
2Lx

(
η+ �n(v)

−λη− �n−1(v)

)
eikxx . (5)

�n(v) are the usual normalized oscillator functions, v =
y/�c − �ckx , η± = [1 ± cos θ ]1/2, and cos θ = esz,+/E

λξ
nsz

.
The eigenvector for the n = 0 LL is given by �

ξ=1
0sz

=
[�0(v),0]T eikxx/

√
Lx with T denoting the transpose. The

FIG. 2. (Color online) Energy spectrum Eλξ
nsz

as a function of the
magnetic field B. Panel (a) is for Ez = 0 and panel (b) for Ez =
12 mV/�. The black solid curve shows the Fermi level vs B. The
additional intra-LL small jumps in (b) result from the lifting of the
spin degeneracy in each valley; e.g., for the K valley, the solid and
dashed curves are for spin down and spin up, respectively, whereas
for the K ′ valley they are interchanged. Notice also the lifting of the
spin and valley degeneracy for the n = 0 LL.

eigenvectors for ξ = −1 are given by Eq. (5) but with �n(v)
and �n−1(v) interchanged and esz,+ replaced by −esz,−. In a
similar manner one obtains �

ξ=−1
0sz

.
The LLs given by Eqs. (3) and (4) are spin and valley

dependent via esz,±, but independent of kx as seen in Fig. 2(b),
so that by applying a perpendicular homogeneous electric
field the spin degeneracy of all LLs is lifted. Meanwhile, the
n = 0 LL is always twice less degenerate than the n � 1 LLs
irrespective of whether the field Ez is present or not. To better
appreciate the difference between the Ez = 0 and Ez �= 0 cases
we plot the spectrum in Fig. 2 versus the magnetic field B.
Panels (a) and (b) correspond to Ez = 0 and Ez = 12 mV/�,
respectively. The black solid curve shows the Fermi level vs
B. The additional intra-LL small jumps in (b) result from the
lifting of the spin degeneracy; the solid and dashed curves
(n � 1) are, respectively, for spin down and spin up in the K

valley, respectively. For the K ′ valley the spin is reversed; e.g.,
for n � 1, the spin-up electrons in the K valley have the same
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FIG. 3. (Color online) Density of states D(E) as a function of the
energy for B = 1 T and � = 0.1 �ωc. The index n above the peaks
labels the LLs.

energy as the spin-down ones in the K ′ valley. For n � 1 all
LLs in (a) are fourfold degenerate corresponding to the two
valley and two spin states except for the split n = 0 LL which
is twice degenerate. But in (b) the presence of Ez splits the
LLs and reduces twice the degeneracy. Another feature worth
noticing is the lifting of the spin and valley degeneracies for
the n = 0 LL.

The spectrum given by Eq. (3) leads to the density of states
D(E), per unit area S0,

D(E) = 1

πS0
Im

∑
ζ

1

E − Eζ + i�
, (6)

where ζ is a concise symbol for the n, sz, λ, ξ , and kx

quantum numbers and � the width of the broadened LLs due
to scattering, which for convenience is taken independent of
ζ . For scattering by δ-function impurities the broadening � is
equal [14] to

√
2/A, where A is a dimensionless parameter

inversely proportional to the impurity density ni and strength
V0 of the scattering potential, A = 4π�

2v2
F /niV

2
0 . We plot

D(E) vs E in Fig. 3 for A = 150, corresponding to � ≈
0.1 �ωc, and B = 1 T. The solid curve is for Ez = 0 and the
dotted one for e�Ez = 12 meV. As can be seen, the overall
shape of the peaks is similar to that for graphene, but a finite
Ez lifts the spin degeneracy of the LLs, which is absent in
graphene, and doubles their number. These peaks become very
sharp if we neglect the LL broadening.

Equations (3)–(5) are necessary for the evaluation of the
conductivities. For that we also need the off-diagonal matrix
elements of the components vx and vy of the velocity operator
v obtained from Eq. (1) and the general formula v = ∂H/�∂k.
We find vx = vF σx and vy = −ξvF σy . Then using the basis
(3) gives

〈λ,n,sz,kx |vx |λ′,n′,s ′
z,k

′
x〉

= (vF /2) δkx,k′
x
δszs ′

z
[λη+η′

− δn,n′−1 + λ′η−η′
+ δn−1,n′ ], (7)

〈λ′,n′,s ′
z,k

′
x |vy |λ,n,sz,kx〉

= (ivF /2) δkx,k′
x
δszs ′

z
[λ′η′

+η− δn′,n−1 − λη′
−η+ δn,n′−1]. (8)

The factor δszs ′
z

is due to the fact that in each block, in which
Hξ is diagonalized and the basis (5) is found, the spin sz does
not change.

B. Linear-response conductivity expressions

In linear response theory, the responses to external time-
dependent perturbations can be expressed in terms of the
unperturbed system functions. More generally, the many-
body Hamiltonian of the system can be described by H =
H0 + HI − R · F(t), where H0 is the unperturbed part, HI

involves binary interactions between electrons with impurities
or phonons, −R · F(t) is the interaction of the system with
an external time-dependent field F(t), R = ∑

ri
, and ri is

the position operator ri of electron i. In order to evaluate
transport coefficients such as electrical conductivity we adopt
the formalism developed in Ref. [15] by using F(t) = eE(t),
where E(t) is the electric field. For a certain representation
in which H0 is diagonal the many-body density operator
ρ = ρd + ρnd has diagonal (ρd ) and nondiagonal (ρnd ) parts.
Accordingly, for weak electric fields and weak scattering
potentials when first-order Born approximation is admissible,
the corresponding conductivity tensor has diagonal (σd

μν) and
nondiagonal (σnd

μν ) parts: σμν = σd
μν + σnd

μν , μ,ν = x,y. In
general two mechanisms contribute to the current, diffusion,
and hopping, but usually only one of them is present. When
a magnetic field is present, we have only the hopping contri-
bution since the diffusive one, involving only the diagonal
elements of the velocity operator, vanishes identically on
account of Eqs. (7) and (8). This hopping contribution is given
by

σ col
xx = βe2

2S0

∑
ζ,ζ ′

f (Eζ )[1 − f (Eζ ′)]Wζζ ′(yζ − yζ ′)2, (9)

where fζ = [1 + exp β(Eζ − EF )]−1 is the Fermi-Dirac dis-
tribution function, β = 1/kBT , T the temperature, and EF

the Fermi level. Further, Wζζ ′ is the transition rate between
the states |ζ 〉 and |ζ ′〉 and yζ = 〈ζ |y|ζ 〉 the expectation value
of the coordinate y. For elastic scattering by impurities the
transition rate Wζζ ′ is

Wζζ ′ = 2πni

�S0

∑
q

|U (q)|2|Fζζ ′(u)|2δ(Eζ − Eζ ′ )δkx,k′
x+qx

,

(10)

with ni the concentration of impurities and q the change in
electron wave vector. Further, u = �2

cq
2/2, U (q) is the Fourier

transform of the scattering potential, and Fζζ ′(u) the form
factor for 〈ζ |eiq·r|ζ ′〉. The expectation value yζ is readily
evaluated: one finds yζ = �2

ckx and yζ ′ = �2
ck

′
x .

Regarding the contribution σnd
μν one can use the iden-

tity fζ (1 − fζ ′ )[1 − exp β(Eζ − Eζ ′)] = fζ − fζ ′ and cast
[16,17] the original expression of Ref. [15] in the familiar
form

σnd
μν (0) = i�e2

S

∑
ζ �=ζ ′

(fζ − fζ ′) vνζζ ′ vμζ ′ζ

(Eζ − Eζ ′)(Eζ − Eζ ′ + i�ζ )
, (11)

where vνζζ ′ and vμζζ ′ are the nondiagonal matrix elements
of the velocity operator, μ,ν = x,y. The sum runs over all
quantum numbers of the states |ζ 〉 = |n,sz,λ,ξ,kx〉 and |ζ ′〉 =
|n′,s ′

z,λ
′,ξ ′,k′

x〉 provided |ζ 〉 �= |ζ ′〉. The infinitesimal quantity
ε in the original form [15] has been replaced by �ζ to account
for the broadening of the energy levels.
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III. RESULTS

A. Hall conductivity

Assuming that the broadening of the LLs is approximately
the same for all states, �ζ ≈ �, one can show that the
imaginary part of Eq. (11) vanishes. In the spirit of the original
derivation of Eq. (11) and to obtain a transparent result for σyx

we first take � = 0. We will consider a finite � later in the
evaluation of the longitudinal conductivity.

To proceed, one needs the product of the velocity matrix
elements in each valley for ν = x and μ = y:

P
λλ′,kxk

′
x

nn′,szs ′
z

= 〈λnszkx |vx |λ′n′s ′
zk

′
x〉〈λ′n′s ′

zk
′
x |vy |λnszkx〉. (12)

Since the matrix elements (7) and (8) are diagonal in kx ,
henceforth we suppress the quantum number kx in order
to simplify the notation. After an explicit evaluation of the
product P λλ′

nn′,szs ′
z
, for the K valley one obtains

P λλ′
nn′,szs ′

z
= iv2

F

4
[η′2

+η2
− δn−1,n′ − η2

+η′2
− δn,n′−1]δszs ′

z
. (13)

As usual the matrix elements between the zeroth LL and the
other LLs should be treated separately since the superscripts
λ and λ′ are not present for n = 0 [17]. Corresponding to
Eqs. (12) and (13) one gets

P
szs

′
z

0n′ = −iv2
F

2
η′2

−δn′,1δszs ′
z
, P

szs
′
z

n0 = iv2
F

2
η2

−δn,1δszs ′
z
. (14)

Notice that we omitted the complex modulus signs in
the coefficients η2

± since they are always real. Now, one
needs to sum over all possible combinations of the matrix
elements, and for simplicity we first start with

∑
λλ′ =∑

++ +∑
−− +∑

+− +∑
−+. Here the subscript +/− de-

notes the conduction/valence band and only the n > 0 LLs
are considered due to the peculiarity of the zeroth level. As
shown in the Appendix, the K valley’s contribution to the Hall
conductivity, σK

yx , can be expressed as a sum of two terms: one
in which the prefactor is independent of esz,+ and a term in
which it is linear in esz,+, i.e., σK

yx = σK + δσK , with

σK = e2

h

∑
n=1,sz

(
n + 1

2

)(
f +

nsz
+ f −

nsz
− f +

n+1sz
− f −

n+1sz

)

(15)
and

δσK = e2

2h

∑
n=1,sz

esz,+

[
f +

nsz
− f −

nsz

εnsz

− f +
n+1sz

− f −
n+1sz

εn+1sz

]
. (16)

The sums in Eqs. (15) and (16) run from n = 1 to infinity and
the zeroth level should be added separately. Similarly, one can
derive the same expressions for carriers in the vicinity of the
K ′ point by replacing only esz,+ with −esz,− everywhere. Then
writing explicitly the sum over sz one sees that the correction
terms δσK and δσK ′ cancel each other provided both valleys
in the nth LL are occupied; evidently they do not cancel when
only a certain spin or valley state is occupied.

For n = 0 the contribution of the K valley is

σ0K = e2

h

∑
sz

[
f0sz

− 1

2

(
f +

1sz
+f −

1sz

) + esz,+
2ε1sz

(
f +

1sz
− f −

1sz

)]
,

(17)

and, as previously for the K ′ valley, one simply replaces esz,+
by −esz,− in Eq. (17) to obtain σ0K ′ . Note again that the terms
esz,± cancel each other when summing over valley contribu-
tions, σ0K + σ0K ′ , because e↑(↓),+ = e↓(↑),−. This reveals that
the conductivity σyx is eventually independent of esz,±; that is,
the size of the band gap does not affect the transverse conduc-
tivity. Although this limit agrees with the results of Ref. [9]
for graphene on a hexagonal boron nitride (hBN) substrate, a
question still remains open: What is the difference between
silicene and gapped graphene considering that the terms esz,±
vanish explicitly in the expression of σyx? The answer lies
in the Fermi function fnsz

. To elucidate this, suppose that the
hole states are already occupied and f −

nsz
= 1. Then the term

f −
nsz

− f −
n+1sz

in Eq. (15) vanishes, and we can use only the
valley index ξ as a superscript. The contribution of the two
valleys is then accounted for in the following expression:

σyx =
∑

ξ

σ0ξ + e2

h

∞∑
n=1

(
n + 1

2

) ∑
sz,ξ

(
f ξ

nsz
− f

ξ

n+1sz

)
. (18)

At zero or very low temperatures the last sum in Eq. (18) has the
value 4 or 2 for n = nF depending on whether the number of
filled spin-valley states is 4 or 2, respectively. The latter occurs
when the electric field splits the LLs and allows intra-LL jumps
of EF between spin-valley states in the same Landau index nF ,
cf. Fig. 2(b). But for graphene on an hBN substrate, the gap �

corresponding to esz,± is constant and the fourfold degeneracy
of the LLs makes this sum always equal to 4 because the
occupation probability is equal for all spin-valley states. As a
result, the additional small jumps of the Fermi level, clearly
seen in the upper (black) curve in Fig. 4, lead to new steps in the
Hall conductivity σyx of silicene. In the main Fig. 4 we plot σyx

vs the magnetic field B for Ez = 0 (dashed curve) and e�Ez =
12 meV (solid curve), T = � = 0, and with an electron density
of Ne = 5 × 1011/cm2. Notice also that Eq. (18) for graphene
takes the form [18] σnd

yx = ±4e2/h(n + 1/2) which, in terms
of the filling factor ν, is written as σnd

yx = νe2/h with [19]
ν = 4(n + 1/2). The additional factor 1/2 is the most obvious
manifestation of the anomalous integer quantum Hall effect

FIG. 4. (Color online) Hall conductivity vs magnetic field B for
e�Ez = 0 (dashed curve) and e�Ez = 12 meV (solid curve); the
electron density is ne = 5 × 1011/cm2 and T = � = 0. The upper
curve shows the Fermi level vs B and the small intra-LL jumps in it
signal transitions between the up and down spin states.
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FIG. 5. (Color online) The same as in Fig. 4 but for 2 � B � 7 T
and the red solid curve being the T = � = 0 result of Fig. 4. Panel
(a) is for different temperatures and panel (b) for different � values.

(IQHE) in gapless, monolayer graphene. The existence of a
Landau-like level at zero energy, for λso = Ez = 0, equally
shared by the conduction and valence bands, is the key to
understand the difference between the QHE in graphene and
in common semiconductors such as GaAs [20].

Another notable feature of the new plateaus in σyx is their
dependence on the broadening � and temperature. This is
indicated by arrows in Fig. 5: the width of the additional
plateaus caused by intra LL transitions of the Fermi level
becomes narrow with increasing temperature T [Fig. 5(a)] or
broadening � [Fig. 5(b)]. By further increasing T or � the new
plateaus disappear because the LL or thermal broadening of
the Fermi function covers the spacing between the spin-split
LLs. To “retain” these plateaus one has to use lower electron
densities and apply a magnetic field for which the spin splitting
exceeds the LL broadening (� ∝ √

B).

B. Longitudinal conductivity and resistivity

In a 2D electron system, a perpendicular magnetic field
confines the electrons in quantized cyclotron orbits. At very
low temperatures, when there is no external stimulation leading
to electron diffusion, electron-impurity scattering can make
electrons change their initial orbits and contribute to the
longitudinal conductivity. We evaluate this contribution by
modeling the impurity potential as that of a screened charge
U (r) = (e2/4πεrε0r)e−ksr , where ks is the screening wave
vector, εr the relative permittivity, and ε0 the permittivity
of vacuum. The Fourier transform of U (r) is then given by
U (q) = U0/(q2 + k2

s )1/2, with U0 = e2/(2εrε0). Further, if the
impurity potential is strongly short-ranged (i.e., δ-function
type), one may use the approximation ks � q and obtain
U (q) ≈ U0/ks . Upon inserting Eq. (10) in Eq. (9) one notices
that the factor (yζ − yζ ′)2 does not vanish, even for elastic
collisions Eζ = Eζ ′ . This is possible because the states |ζ 〉 and
|ζ ′〉 correspond to unequal wave vectors kx and k′

x = kx − qx ,
respectively (qx is the x component of the change in wave
vector q) and as a result the centers of the initial and final
cyclotron orbits are different. Since the scattering is elastic
and the eigenvalues are degenerate in the quantum number
kx , cf. Eq. (3), only the n → n transitions are allowed. In

addition, no transition is allowed between the conduction and
valence bands since the large band gap created by the strong
SOI excludes elastic scattering. Then, using Eq. (3), one can
replace the delta function in Eq. (10) by a Lorentzian of width
�. Also, since in the transition ζ → ζ ′ the quantum numbers
n, sz, λ, and ξ remain unchanged, for ξ = 1 one can write the
form factor in Eq. (10) as

|Fζζ ′(u)|2 ≡ ∣∣Fλ1
nsz

(u)
∣∣2 = 1

2
e−u[η2

+ Ln(u) + η2
− Ln−1(u)]2,

(19)

for n > 0, and |F 1
0sz

(u)|2 = e−u for n = 0. This expression
is identical to that of Ref. [9] in which, however, the gap
has a different origin. The factor (yζ − yζ ′ )2 is equal to
�4

cq
2 sin2 ϕ. Now using polar coordinates,

∑
kx

→ S0/2π�2
c

and
∑

q → (S0/4π2)
∫

q dq
∫

dϕ = [S0/(2π�c)2]
∫

du
∫

dϕ,
Eq. (9) takes the form

σ col
xx = e2

h

βniU
2
0

4uc�ωc

∑
n,sz,λ,ξ

Mλξ
nsz

Eλξ
nsz

f
(
Eλξ

nsz

)[
1 − f

(
Eλξ

nsz

)]
,

(20)

where uc = �2
ck

2
s /2 and

Mλξ
nsz

=
∫ ∞

0
u
∣∣Fλξ

nsz
(u)

∣∣2
du. (21)

Observing that in the approximate derivation of Eq. (20) the
quantity U0/κs is equivalent to the strength V0 of Ref. [14],
we see that niU

2
0 /4uc�ωc ∝ 1/A and consequently σ col

xx is
inversely proportional to the constant A introduced above.

In Eq. (20) the summation over ξ takes into account the
two valleys. Similar to the case of the Hall conductivity,
this summation is necessary because the energy spectra in
the two valleys differ in the zeroth level. The integration
in Eq. (21) is carried out analytically using the orthogonal-
ity of the polynomials Ln(u) and their recurrence relation
(n + 1)Ln+1(u) − (2n + 1 − u)Ln(u) + nLn−1(u) = 0. The
result is

Mλ,1
n,sz

= 1

4
[(2n + 1) η4

+ − 2n η2
+ η2

− + (2n − 1)η4
−]. (22)

A similar expression can be derived for ξ = −1. When Ez =
λso = 0, the expression for Mλ1

nsz
reduces to 2n/4, which means

that the minima of the diagonal conductivity σxx occur at odd
filling factors ν = 2n + 1 in accord with Ref. [21]. Recall that
in common semiconductors the minima occur at even filling
factors ν = 2n, and that σxx ∝ (2n + 1).

In Fig. 6 we plot the longitudinal conductivity given by
Eqs. (20) as well as the Fermi level and density of states
(DOS) as functions of the magnetic field B. The blue dashed
(red solid) curves indicate the results in the absence (presence)
of the electric field. One sees that the LL splitting by a finite
electric field has doubled the number of the Fermi level jumps
and the peaks in the DOS and Shubnikov–de Haas oscillations
of the longitudinal conductivity. As expected, the conductivity
resonances coincide with the peaks of the DOS and its value
drops, for finite field Ez, when the Fermi level passes through
two successive LLs or sublevels. This can be clearly seen
by tracing out the vertical dashed lines. The longitudinal
conductivity is also shown in Fig. 6(b) for a larger broadening

235423-5



SHAKOURI, VASILOPOULOS, VARGIAMIDIS, AND PEETERS PHYSICAL REVIEW B 90, 235423 (2014)

FIG. 6. (Color online) (a) Fermi level, density of states near the
Fermi level, and longitudinal conductivity vs magnetic field B for
Ez = 0 (dotted curves) and Ez = 12 mV/� (solid curves). The
broadening is � = 0.04 �ωc, T = 2 K, and the electron density
Ne = 5 × 1011/cm2. The doubling of the σxx peaks for Ez �= 0
directly correlates with that of the DOS and the intra-LL transitions
of the Fermi level (see vertical lines). (b) Longitudinal conductivity
for � = 0.04 �ωc and � = 0.1 �ωc in the range 1.5 � B � 3.5 T.

� = 0.1 �ωc. The oscillation peaks have become sharp but
more narrow compared to those in Fig. 6(a).

Another measurable quantity is the magnetoresistivity
tensor given, in terms of the conductivity tensor, by

ρ =
[
ρxx ρxy

ρyx ρyy

]
= 1

S

[
σyy −σxy

−σyx σxx

]
, (23)

where S = σxxσyy − σxyσyx . Since the system is assumed to
be isotropic, the longitudinal components ρxx and ρyy are
equal. The results obtained for the longitudinal resistivity ρxx ,
as a function of the field B and the electron density ne are
summarized in Fig. 7 for Ez = 0 in (a) and e�Ez = 12 meV
in (b). The white triangular strip near the center of each
figure, at the vicinity of Ne = 0, shows a region in which
the resistivity diverges because simply no carriers exist in the
conduction or valence band to contribute to the conductivity.
In the other regions the resistivity peaks appear as a fan
diagram [22,23] whose blades broaden with increasing B

corresponding to the broadening of the DOS; see Fig. 6(a). On
the other hand, by decreasing B one sees numerous superficial
peaks that disappear gradually when B vanishes. The reason
is that for weak fields B the number of LLs near the Fermi

FIG. 7. (Color online) (B,ne) fan diagram of the longitudinal
resistivity ρxx , in units of �/e2, and the curve of ρxx (upper x axis)
vs field B (left y axis). Panel (a) is for Ez = 0 and panel (b) for
e�Ez = 12 meV. Further, � = 0.1 �ωc and Ne = 5 × 1011/cm2. In
the bright region ρxx diverges; the color scale appears on the right.

level participating in the longitudinal conductivity increases.
Another notable feature of the fan diagram is that the number
of peaks in ρxx is doubled for finite field Ez due to the lifting
of the spin degeneracy.

In Fig. 8 we plot the longitudinal and transverse components
of the conductivity and resistivity tensors, shown respectively
in (a) and (b), as function of the electron density Ne for
e�Ez = 0 meV, B = 3 T, and the dimensionless parameter
A = 150 (the sample is assumed to be very clean). As usual, the
transition regions between the plateaus of ρxy are accompanied
by peaks in ρxx ; the distance between the peaks, shown in (b), is
n0 = gsgvB/φ0 which is in agreement with the observations
on graphene samples of Ref. [20]. The heights of the first
three plateaus of ρxy are 1/2, 1/6, 1/10. A deep minimum
is seen in ρxy = σyx/(σ 2

yx + σ 2
xx) at low electron densities

and occurs, as shown, when the longitudinal conductivity
component σxx exceeds the component σyx . Similar deeps have
been experimentally observed in graphene samples [24,25].

Finally, in Fig. 9 we show the same plots as in Fig. 8
but for e�Ez = 12 meV. As shown in Fig. 8(b), the distance
between the peaks of ρxx is n0 = gsgvB/φ0. The reason is
that in strong magnetic fields the LL spacing is very large
and the peaks of the DOS are well separated so that the
overlap between them vanishes. In this case each LL has
gsgv/2π�2

c = gsgvB/φ0 states, per area S0, that can be filled
by electrons before the next LL starts to fill. However, the
regularity of the peaks is weakened or destroyed when an
external electric field is present because this field lifts the
spin degeneracy and makes adjacent peaks of the DOS move
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FIG. 8. (Color online) (a) The Hall conductivity σyx and the
longitudinal component σxx as a function of the electron density for
T = 2 K, � = 0.1 �ωc, B = 3 T, and Ez = 0. (b) The Hall (ρyx) and
longitudinal (ρxx) resistivities for the same parameters as in (a). The
dent in ρxx at low electron density is due to the fact that σyx < σxx .
The same dents are seen in the experimental results of Refs. [24]
and [25].

closer to each other or overlap. Figure 9 shows this effect for
e�Ez = 12 meV. As a result, the peaks of ρxx are doubled
and their regularity is broken. As expected, the electric field
also doubles the number of the plateaus in ρxy shown here at
heights 1/2, 1/4, 1/6, 1/8, 1/10.

IV. SUMMARY

We studied the transport coefficients of freestanding mono-
layer silicene subject to a quantizing magnetic field. Due to
silicene’s buckled structure, the gap between the conduction
and valence bands, due to the strong SOI, can be further
controlled by an external electric field; see Fig. 1(b). It was
shown that the combined action of the electric field and
strong SOI reduces the degeneracy of the LLs by a factor
of 2, facilitates intra-LL transitions, and results in integer
and half-integer quantum Hall plateaus. As detailed in the
text, the latter plateaus are more sensitive to disorder and
thermal broadening than the former; cf. Fig. 5. Moreover, the
electric field doubles the peaks of the Shubnikov–de Haas
oscillations of the longitudinal conductivity. The deep minima

FIG. 9. (Color online) The same as in Fig. 8 but for e�Ez =
12 meV.

in these oscillations are accompanied by Fermi level jumps
and the peaks coincide with the usual singularities of the DOS.
Mapping the magnetoresistivity in terms of the electron density
and magnetic field results in a fan diagram whose blades are
broadened with increasing magnetic field. A doubling of the
peaks is also predicted for the resistivity when a perpendicular
homogeneous electric field is present.
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APPENDIX: DERIVATION OF THE
HALL CONDUCTIVITY

Below we outline the derivation of the Hall conductivity. We
first consider the case ξ = 1. Using Eq. (11), the contribution
of the K valley can be expressed as

σK
yx(0) = i�e2

S0

∑
kx

∑
nn′λλ′

∑
szs ′

z

(
f λ1

nsz
− f λ′1

n′s ′
z

)
P λλ′

nn′,szs ′
z(

Eλ1
nsz

− Eλ′1
n′s ′

z

)2 . (A1)

For simplicity, in what follows we drop the superscript 1 from
the Fermi function and energy. In addition, in order to sum over
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the band index λ and eliminating it we express the energy as
Eλ

nsz
= λεnsz

; cf. Eq. (3). With the help of the matrix elements
given in Eq. (13) and by considering the spin orthogonality
δsz,s ′

z
, Eq. (A1) yields

σK
yx = σ0K − C

∑
kx

∑
n=1,sz

∑
λλ′

(
I λλ′
nsz

+ I λ′λ
nsz

)
, (A2)

where σ0K is the contribution from the zeroth LL, C =
e2υ2

F /�ω2S0, and

I λλ′
nsz

= f λ
n+1sz

− f λ′
nsz(

λεn+1sz
− λ′εnsz

)2

×
(
esz,+ + λ′εnsz

)( − esz,+ + λεn+1sz

)
4λλ′εn+1sz

εnsz

. (A3)

Summing over λ and λ′, Eq. (A2) can be written as

σK
yx(0) = σ0K − 2C

∑
kx

∑
n=1,sz

(
I++
nsz

+ I−−
nsz

+ I+−
nsz

+ I−+
nsz

)
.

(A4)

We calculate the sum I++
nsz

+ I+−
nsz

using Eq. (A3). The Fermi
function f +

n+1sz
enters with a prefactor given by

εn+1sz
− esz,+

4εn+1sz
εnsz

[
esz,+ + εnsz(

εn+1sz
− εnsz

)2 − esz,+ − εnsz(
εn+1sz

+ εnsz

)2

]

= n + 1

2
+ esz,+

2εn+1sz

. (A5)

The functions f +
nsz

, f −
nsz

, and f −
n+1sz

enter in a similar way. We
obtain
∑

λλ′=±
I λλ′
nsz

=
(

n + 1

2

)(
f +

n+1sz
+ f −

n+1sz
− f +

nsz
− f −

nsz

)

+ esz,+
2

[
f +

n+1sz
− f −

n+1sz

εn+1sz

− f +
nsz

− f −
nsz

εnsz

]
. (A6)

Now, by substituting
∑

kx
→ Lx

∫ Ly/�
2
c

0 dkx/2π and using
Eq. (A6) the contribution of the n � 1 LLs, i.e., the second
term in Eq. (A2), is given by σK + δσK where

σK = e2

h

∑
n=1,sz

(
n + 1

2

)(
f +

nsz
+ f −

nsz
− f +

n+1sz
− f −

n+1sz

)
,

(A7)

δσK = e2

2h

∑
n=1,sz

esz,+

[
f +

nsz
− f −

nsz

εnsz

− f +
n+1sz

− f −
n+1sz

εn+1sz

]
.

(A8)

Similarly, the contribution from the zeroth LL is

σ0K = e2

h

∑
sz

f0sz
−1

2

(
f +

1sz
+f −

1sz

) + esz+
2ε1sz

(
f +

1sz
−f −

1sz

)
. (A9)

For the K ′ valley one follows the same steps. The resulting
expressions analogous to Eqs. (A7)–(A9) are

σK ′ = e2

h

∑
n=1,sz

(
n + 1

2

)(
f +

nsz
+ f −

nsz
− f +

n+1sz
− f −

n+1sz

)
,

(A10)

δσK ′ = − e2

2h

∑
n=1,sz

esz,−

[
f +

nsz
− f −

nsz

εnsz

− f +
n+1sz

− f −
n+1sz

εn+1sz

]
,

(A11)

σ0K ′ = e2

h

∑
sz

f0sz
− 1

2

(
f +

1sz
+f −

1sz

) − esz−
2ε1sz

(
f +

1sz
−f −

1sz

)
.

(A12)

Writing explicitly the sum over sz one sees that the correction
terms δσK and δσK ′ cancel each other if there is identical
occupancy of the degenerate states.
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