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There is a wide range of science and applications accessible via the strain engineering of quantum
transport in 2D materials. We propose a realistic experimental platform for uniaxial strain
engineering of ballistic charge transport in graphene. We then develop an applied theoretical model,
based on this platform, to calculate charge conductivity and demonstrate graphene quantum strain
transistors (GQSTs). We define GQSTs as mechanically strained ballistic graphene transistors
with on/off conductivity ratios > 104, and which can be operated via modest gate voltages. Such
devices would permit excellent transistor operations in pristine graphene, where there is no band
gap. We consider all dominant uniaxial strain effects on conductivity, while including experimental
considerations to guide the realization of the proposal. We predict multiple strain-tunable transport
signatures, and demonstrate that a broad range of realistic device parameters lead to robust
GQSTs. These devices could find applications in flexible electronic transistors, strain sensors, and
valleytronics.

I. INTRODUCTION

High on/off ratio transistors based on pristine bulk
graphene have been sought after for a long time, and were
previously proposed in idealized ballistic devices under
uniaxial strain1–3. We name these proposed devices
graphene quantum strain transistors (GQSTs). Their
conductivity can be turned off, not due to a band
gap, but because uniaxial strain can tailor the energy,
momentum, and quantum transmission of graphene’s
ballistic electrons4. GQSTs are technologically relevant
given that ballistic transport in graphene can persist
over lengths up to a micron at room temperature5,6.
A state-of-the-art transistor behavior in graphene would
be a paradigm shift for flexible electronic devices7,
and the quantum engineering of 2D heterostructures8.
Unfortunately, a full decade after the first proposal of
GQSTs1, there is no clear path forward to realize them
experimentally. This bottleneck is widespread amongst
many proposals in quantum transport strain engineering
(QTSE) in graphene and other 2D materials1,9–13. We
see two main causes for the slow experimental realization
of QTSE proposals in 2D materials. Firstly, there
is no established experimental platform, with in situ
tunable mechanical strain, suited for low-temperature
quantum transport measurements. Secondly, due to the
hypersensitivity of 2D materials to their environment,
there are large quantitative discrepancies between
the predictions of idealized transport models and
experiments. As a concrete example, previous theoretical
predictions of the GQST effect were far too optimistic
because they treated metal films covering graphene as not
affecting its Fermi level1, or omitted important effects of
the mechanical strain2,3,14,15 on graphene’s Hamiltonian.

Graphene is an ideal system to first bridge the present
experiment-theory divide in QTSE of 2D materials.
Its extreme mechanical strength, flexibility, and elastic
deformation range make graphene’s electronics vastly
tunable via mechanical deformations4,9,10,13, while its
defect-free lattice allows ballistic (quantum) transport5,6.

It has been shown that a non-uniform strain can add
extreme pseudomagnetic fields16 ∼ 100 T to graphene’s
Dirac Hamiltonian. Mechanical strains can be applied
to graphene deposited on flexible17 or nanoengineered18

substrates, as well as in suspended devices19. In the
short term, uniaxial strain engineering of graphene could
demonstrate GQSTs. These would be ideal transistors
for flexible electronics due to their high on/off ratio
and fast transit frequency20, could be used as sensitive
strain sensors21,22, and permit the development of valley
filters for valleytronics23,24. Beyond uniaxial strain,
there are ongoing efforts to use strain-engineering in
graphene to explore zero-magnetic-field quantum Hall
physics9,11,16,25,26 and topological phase transitions12,27.

Here, we first present a powerful experimental platform
for uniaxial strain engineering of quantum transport
in graphene or other 2D materials. We provide all
relevant experimental parameters of both the mechanical
strain instrumentation and suspended graphene devices
to realize GQSTs. We calculate the mechanically-
tunable, thermally-induced, and gate-induced strains
in the devices, and predict a widely tunable total
mechanical strain (2.6 % < εtotal < 5.1 %). We
show that εtotal and the Fermi energy, EF , in the
transistor channel can be independently controlled. We
then present a complete model of the ballistic charge
conductivity in uniaxially strained graphene, which
describes the proposed experimental platform. We
include all dominant effects of uniaxial strain, such as the
scalar potential13,28 due to modulation of next-nearest-
neighbor (nnn) hopping, and vector potentials13,14 from
changes to the nearest-neighbor (nn) hoppings, γn,
and spacings, δn, where n = 1, 2, 3 (see Fig. 1).
We use experimentally relevant parameters, including
a realistic doping level for graphene covered by a
metal29, a wide channel W/L� 1 boundary condition30,
easy-to-fabricate device dimensions, arbitrary crystal
orientations, and achievable strain values.

The main purpose of our detailed calculations is to
properly guide experimentalists toward the realization
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of GQSTs. As such, we detail all needed ingredients
to make major quantitative (order of magnitude)
improvements in the accuracy of previous models to
calculate the strain-dependent conductivity. We report
four quantitative transport signatures of the model: a
shift of the gate voltage position of the conductivity
minimum, a dramatic conductivity suppression, a rich
set of Fabry-Pérot (FP) interferences, and a large
modulation of the electron-hole conductivity asymmetry.
Finally, we demonstrate that a strong GQST effect
(σon/off > 104) is broadly realistic. The transistors can
be turned on/off via a simple gate voltage, while strain is
held constant. The simplicity, and detailed description,
of the experimental proposal should permit a short-term
demonstration of GQSTs. More broadly, we believe that
this type of experiment-ready proposal can accelerate the
development of QTSE in 2D materials.

II. PLATFORM FOR QTSE IN 2D MATERIALS

We propose, in Fig. 1, a device geometry and
instrumentation to realize graphene quantum strain
transistors. This platform combines many important
features to connect measurements to a simple theory.
The suspended graphene channel is shown in Fig. 1(a)
– (b), and its dimensions, L = 100 nm and W =
1000 nm, can be readily fabricated31. The length of
the naked graphene channel is defined by gold films
directly deposited on top of exfoliated graphene. It
was previously reported that such gold films, after
annealing, can dope the graphene underneath without
disrupting its ballistic transport32,33. These gold-covered
graphene regions act as contacts to the naked graphene
channel. Few-nm sharp p–n junctions form between
these graphene contacts and the naked channel32,33. The
large aspect ratio of the channel W/L � 1 ensures
that quantum transport is not affected by the atomic
disorder at the edges of the exfoliated crystal, such
that a smooth boundary condition in the y-direction
is justified30. Additionally, because the channel is
mechanically clamped across its entire width and W/L�
1, there is no significant scrolling of the free edges19.
Thus, the channel closely matches an ideal rectangle and
can be described with a simple analytic ballistic transport
model.

The outset of Fig. 1(a) shows the graphene lattice with
nearest-neighbor spacing a = 1.42 Å, the two-atom basis
(A,B), primitive lattice vectors ai, and nearest-neighbor
vectors δn. Also pictured is the crystal orientation, θ,
defined as the angle between the x-axis of the device and
the zig-zag direction of the crystal. This angle can be
measured prior to the gold film deposition using polarized
Raman spectroscopy34, or STM imaging35. Figure 1(b)
shows suspended gold beams, ≈ 120 nm thick, used to
anchor the suspended graphene. The total suspension
length of the gold cantilevers and channel is u = 900
nm. This suspension length can be tuned by etching

Gold Gold

Source DrainChannel

(a)

(c)

�
��

��

3

2

1

0
ε

(%
)

3002001000

dz (μm)

1086420

VG (V)

20

15

10

5

0

σ
(4

e
2
/π

h)

-10 -5 0 5 10

VG (V)

-10 -5 0 5 10

n (x10
11

cm
-2

)

(d)

(b)

Gate (Si)

SiO2

Source 
Channel

Push 
Screw

Si Chip

Drain

FIG. 1. Platform for uniaxial quantum transport strain-
engineering (QTSE) in graphene. (a) Top-down view of
the proposed ballistic graphene transistor geometry. Outset:
the graphene lattice, showing the crystal orientation θ with
respect to the x-axis. (b) Side views of the proposed
graphene device and mechanical strain instrumentation. The
mechanical assembly bends the substrate, which strains the
suspended channel. (c) The three sources of strain in the
channel: the mechanical motion (black, top axis) of the
push screw, the thermal contraction (red) at ∼ 1 Kelvin,
and electrostatic strain (blue, bottom axis) from VG. Insets:
visualizing the strain imparted by the thermal contraction
of the gold cantilevers (top left), and electrostatic pulling
(bottom right). (d) Conductivity versus charge density, n
(bottom axis), or VG (top axis). The data are for an
unstrained channel of L = 100 nm, W = 1000 nm, with
contact doping ∆µcontact = −0.12 eV (black), ±∞ (red), and
∆µcontact = ∆µG (blue).

the SiO2 under the gold with a standard anisotropic wet
etch31. Upon bending the silicon substrate, the gold
cantilevers amplify the mechanical strain applied to the
naked graphene channel. The suspension height of the
channel above the doped-silicon back-gate is tvac = 50
nm. The device’s suspension enables its in situ thermal
annealing, so as to reach the ballistic transport regime
in both the channel36 and suspended contacts33,37. A
standard dc transport circuit (Fig. 1(a)) can be used
for both the annealing and transport measurements. An
important aspect of this device design is the large areas
of the two gold mechanical anchors (∼ µm2) permitting
slippage-free clamping of the graphene channel.



The proposed mechanical strain instrumentation
shown in the lower portion of Fig. 1(b) is very similar
to a previously reported mechanical break-junction
assembly38. It was shown to operate accurately over
the mechanical range needed for the present proposal,
and at low-temperatures and in high magnetic fields39,40.
This instrumentation is better suited for QTSE in 2D
materials than recent methods41,42 which may not be
compatible with low-temperatures, or do not offer an
independent control of both strain and charge density in
the channel. A finely-polished macroscopic push screw is
used to reversibly bend a 200 µm-thick silicon substrate
between two anchoring points, spaced apart by D = 8
mm. The expected channel strain from the motion of the
push screw is given by38, εmech = (3ut/D2)dz/L, where
L is the naked graphene channel length, u is the total
suspended length of the gold cantilevers and channel,
t is substrate thickness, D is the distance between the
anchoring points, and dz is the vertical displacement
of the push screw. Based on previous experiments38,
the range of dz is up to ∼ 300 µm, giving a range of
mechanical strain εmech ≥ 2.5 %. This instrumentation
is modular such that the clamping of the substrate and
graphene flake could be modified to permit, for instance,
triaxial strain engineering9,11.

Figure 1(c) details the main sources of strain in the
suspended channel. Because device nanofabrication is
done at room temperature, a substantial amount of strain
will be generated when cooling the devices to cryogenic
temperatures. The top inset of Fig. 1(c) shows the
contribution to this thermal strain, εthermal, arising from
the contraction of the gold cantilevers43. As detailed
in Supplementary Information S1, we find εthermal =
2.6±0.1 % for devices near ∼ 1 Kelvin. As shown in Fig.
1(c), this εthermal is independent of either gate voltage,
VG, or mechanical displacement of the push screw, dz. At
a fixed temperature, this constant thermal strain will not
hinder the exploration of strain engineering proposals. A
second source of strain in the channel is the stretching εG

caused by the electrostatic force1 from VG, as shown in
the bottom inset of Fig. 1(c). Given the very short length
of the graphene channel, L = 100 nm, and the sturdiness
of the gold cantilevers, we calculate that εG is very small
(∼ 0.01 %) over the −10 V < VG < 10 V range relevant
for experiments. This leaves the mechanical push screw
0 ≤ εmech ≤ 2.5 % (black data) as the only way to tune
the total strain, εtotal = εthermal + εG + εmech = 2.6 –
5.1 %. The proposed instrumentation permits broad, and
independent, control of the uniaxial strain and charge
density in the graphene channel.

To complete the GQST proposal, we require devices
with adequate ballistic contact regions for the ballistic
channel. This will permit the use of a simple analytical
ballistic model for both the contacts and channel, and
enable high on/off ratio GQSTs. Indeed, as we will see
below, the graphene contacts’ Fermi energy ∆µcontact

must be comparable or smaller than the strain-induced
potentials in the channel for optimal GQST operation.

The source and drain contacts in our devices are sections
of the same graphene crystal as the naked channel,
but are located under gold cantilevers (Fig. 1(a)–(b)).
The very long injection length of electrons from gold
into graphene33,44 ensures that the electrons entering
the naked graphene channel come from the graphene
electrodes, and not directly from the gold film. The
∆µcontact in the graphene contacts arises from the charge
transfer due to the work function difference between the
metal and graphene29. This contact doping determines
how many subbands (ballistic modes) are occupied in
the contacts. Each of these contact modes may be
transmitted across the channel, depending on VG and
the strain-induced potentials.

We chose gold as the metal covering the graphene
contacts, because its work function leads to the needed
contact doping29,45 (|∆µcontact| = 0.05 – 0.25 eV). The
exact ∆µcontact depends on the oxygen content of the
gold film, since it modifies the gold work function.
The oxygen content can be adjusted in situ via Joule
annealing33. For the purpose of the present work we use
a median value33 of |∆µcontact| = 0.12 eV with p-doping.
Figure 1(d) shows the calculated ballistic conductivity,
σ, as a function of the charge density in the channel, n,
or equivalently VG on the top axis, when εtotal = 0. We
based this calculation on the standard ballistic transport
model for a W/L � 1 geometry30. To highlight the
impact of contact doping on the σ - VG characteristics, we
plot in Fig. 1(d) the conductivity for ∆µcontact = − 0.12
eV (black), ±∞ (red), and ∆µcontact = ∆µG (blue). The
inclusion of a realistic ∆µcontact becomes critical when
strain is applied. An infinite contact doping makes σ
completely insensitive to strain, while the previously used
approximation1 of ∆µcontact = ∆µG grossly exaggerates
the strain dependence. We note that our main conclusion
that GQSTs are feasible is preserved over a broad range
of realistic ∆µcontact, as we will show below.

III. APPLIED THEORY FOR UNIAXIAL QTSE
IN GRAPHENE

In this section, we translate the above instrumentation
and device design into an applied theoretical model
to calculate the transmission probability of charge
carriers across the device as it is uniaxially strained.
We consider all strain effects to first order, given
that εtotal � 1. The uniaxially-strained-graphene
Dirac Hamiltonian, shown in Eq. 1, is similar to
previously reported ones2,3,13,14,30,46, but includes all
relevant experimental considerations (Supplementary
Information S2). The details, and hierarchy, of
all experimental and theoretical uncertainties in our
proposal are discussed in Supplementary Information S3.
Given the smooth-edge boundary condition for our wide
aspect ratio devices, the Hamiltonians in the Ki and K ′i
valleys are decoupled, i = 1, 2, 3. Equation 1 describes
the Ki valleys in the channel, while reversing the sign of
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FIG. 2. Applied theory for uniaxial QTSE in graphene. (a) Dirac cone and Fermi circle in the unstrained source/drain graphene
contacts, and (b) in the strained graphene channel. (c) Unstrained (black) and uniaxially strained (red) first Brillouin zone
(FBZ) of graphene when θ = 0◦. The strain value in this figure is exaggerated, εtotal = 20 %, to make its effects clearly visible.
(d) Under strain, the Dirac point shifts define gauge vector potentials (blue arrows), Ai = Alat,i + Ahop. The outset shows
that the corner of the FBZ does not coincide with the Dirac point under strain. (e) Charge carrier wave vectors in the source,
channel, and drain of the uniaxially strained ballistic transistor. The ballistic modes are labelled with their y-component wave
number qn. The Ai,y in the channel modifies the propagation angle, φ, and transmission probability, T , of the carriers. (f) –
(g) T of the conduction modes for Ai,y = 0 and Ai,y = kF respectively. The circles represent the Fermi surfaces in the contacts
(big circles) and channel (small circles), while the solid curves show the T (origin = 0, outer circle = 1) versus the incidence
angle on the channel (polar axis), when θ = 15◦ and ∆µcontact = − 0.12 eV. The boundary condition in y imposes transversal
momentum conservation (dashed lines), and explains the zero transmission at some angles.

the Ai gives the correct expression in the K ′i valleys.

HKi
= h̄vF (Ī + (1− β)ε̄) · σ · (k̃ −Ai) + ∆µG + ∆µε (1)

The k̃ refers to the carrier wave vector in the strained
channel. The pseudospin operator σ = (σx, σy) is
represented by the Pauli matrices and acts on the two-
component spinor wavefunction referring to the A and B
sublattices. The pseudospin orientation is either parallel
(up) or anti-parallel (down) with the generalized wave

vector k̃−Ai. The matrices Ī and ε̄ are respectively the
identity matrix and strain tensor. In the device’s x - y
coordinates, ε̄ has elements εxx = εtotal, εyy = −νεtotal

and εxy = εyx = 0, where ν = 0.165 is the Poisson

ratio13. The term ∆µG = h̄vF
√
πCG(VG − VD)/e is the

gate-induced electrostatic potential in the channel, where
vF = (3/2)γ0a/h̄ = 8.8 × 105 m/s is the Fermi velocity,
γ0 = −2.7 eV, and CG = 1.7 ×10−8 F/cm2 is the gate-
channel capacitance.

The Hamiltonian in the source/drain graphene

contacts is similar to Eq. 1, but the carrier wave vector k̃
is replaced by k for clarity, the strain-induced terms are
set to zero, and ∆µG is replaced with ∆µcontact. As per
Eq. 1, uniaxial strain has three main qualitative effects
on the channel’s band structure: a downward shift of the
Fermi energy which can be described by a scalar potential
∆µε, crystal momentum shifts of the Dirac points which



can be described by gauge vector potentials Ai, and an
anisotropic warping the Dirac cones which corresponds to
a direction-dependent Fermi velocity v̄F = vF (Ī + (1 −
β)ε̄). For uniaxial strain, v̄F has only diagonal elements
vF,xx = 1+(1−β)εtotal and vF,yy = 1−(1−β)νεtotal. The
parameter β = −d(ln γ0)/d(ln a) ≈ 2.5 is the electronic
Grüneisen parameter13. We discuss in Fig. 2 the origin
and magnitude of the strain-induced scalar and vector
potentials, and how they impact charge transport. We
then calculate the transmission probability of individual
conduction modes, and sum them to obtain the device’s
charge conductivity.

Figure 2(a) – (b) shows the low energy dispersion and
Fermi circle around a Dirac point in, respectively, the
source/drain contacts and the strained channel. The
magnitude of the Fermi wave vector in Fig. 2(a) is set
by the contact doping, kF = ∆µcontact/h̄vF . In the

strained channel, as shown in Fig. 2(b), k̃F depends on
both the strain-induced scalar potential and the gate-
induced doping, k̃F = (∆µG +∆µε)/h̄vF . The term ∆µε
arises from the strain-dependence of the nnn hopping28

(Supplementary Information S2), γ
′

0 ≈ −0.3 eV. The nnn
hopping does not connect lattice sites A and B, and is
thus not related to the pseudospin of charge carriers. The
consequence of this scalar potential is a shift of the low
energy band structure, given by ∆µε = gε(1 − ν)εtotal,
where47 gε ≈ 3.0 eV.

The strain-induced changes to the nearest-neighbor
hopping14 γ0 are incorporated in the Dirac Hamiltonian
of graphene as gauge vector potentials Ai. Figure 2(c),
shows the unstrained (black) and strained (red) first
Brillouin zones (FBZs) for a strain along the zig-zag
direction (θ = 0◦). To better visualize the Ai in Fig.
2(c) – (d), we show εtotal = 20 %, but restate that we
only studied εtotal ≤ 5.1 %. To understand conceptually
the origin of the Ai, we need to go back to the tight-
binding Hamiltonian of graphene13,14 which led to Eq. 1,

H0 = γ0

∑
k̃

∑3
n=1(exp[−ik̃ · δn]a†

k̃
bk̃ + H. c.). To first

order in strain, there are two main modifications to this
tight-binding Hamiltonian. Firstly, the stretching of the
nn distances, δn, modifies the Hamiltonian with δn →(
Ī + ε̄

)
· δn. Secondly, the value of the nn hopping is

modified as γ0 → γ0 exp
[
−β
{(∣∣(Ī + ε̄

)
· δn
∣∣ /a)− 1

}]
.

Both of these effects can be rewritten as gauge vector
potentials14 in Eq. 1, respectively as Alat,i = −ε̄ ·Ki,
and Ahop = β/2a(εxx − εyy,−2εxy). The total gauge
potentials are then Ai = Alat,i+Ahop. The signs of both
components of the vector potentials are opposite in the
Ki and K ′i valleys. To make this model applicable to real
devices, we generalize (Supplementary Information S2)
the vector potentials to an arbitrary crystal orientation

θ with respect to the device’s x-axis14. We find,

Ai = Alat,i +Ahop (2a)

Ahop =
βε(1 + ν)

2a

(
cos 3θ
sin 3θ

)
(2b)

Alat,1=
4πε

3
√

3a

(
− cos θ
ν sin θ

)
(2c)

Alat,2=
2πε

3a

(
1√
3

cos θ + sin θ

− 1√
3
ν sin θ + ν cos θ

)
(2d)

Alat,3=
2πε

3a

(
1√
3

cos θ − sin θ

− 1√
3
ν sin θ − ν cos θ

)
(2e)

Because of lattice symmetry, 0◦ < θ < 60◦. The
vector potentials from Eq. 2 are plotted versus θ in
Supplementary Information S2. An illustration of the
vector potentials from Eq. 2, at θ = 0◦, is shown in
Fig. 2(c). The Ai represent the displacements from the
original unstrained Dirac points to the strained ones.
Figure 2(d) details the contributions from the terms
Alat,i and Ahop to the new Dirac point locations KD,i =
Ki + Alat,i + Ahop. As shown in the outset of Fig.
2(d), the new Dirac points no longer coincide with the
corners of the FBZ46. We remark that the two terms in
the vector potential are of comparable magnitude, and
both significantly affect the Hamiltonian and transport.
However, in most previous work, the focus has been on
studying pseudomagnetic fields13, Bp = ∇×A. Because
Alat,i always has zero curl15, it has often been neglected.
It is however crucial to include it in our study, which is
focused on the direct consequences of the gauge vector
potentials as in an Aharonov-Bohm experiment.

To clarify the connection between Eq. 1 and ballistic
conductivity in our devices, we show in Fig. 2(e) an
example of a charge carrier trajectory as it moves from
the source (unstrained) to the channel (strained), and
then the drain electrode (unstrained). The trajectory is
described by the momentum wave vector in the source,
k = kxx̂ + qnŷ, and in the channel, k̃ = k̃xx̂ + q̃nŷ.
The transverse boundary condition conserves the y-
momentum throughout the device1, such that q̃n =
qn−Ai,y. This strain-induced shift in y-momentum alters
the propagation angle, φ, of the carriers, and their Klein
transmission at the strained/unstrained interfaces. Using
Eq. 1 and matching the carrier’s wavefunction at the
potential steps along x, we solve for the transmission
probability Tξ,i,n for the conduction mode n, in valley
ξ, i, where ξ = ±1 for the Ki and K ′i valleys, respectively,
and i = 1, 2, 3. We find

Tξ,i,n =
(
vF,xx

vF
kxk̃x)2

(
vF,xx

vF
kxk̃x)2 cos2[k̃xL] + (kF k̃F − vF,yy

vF
qn(qn − ξAi,y))2 sin2[k̃xL]

, (3)



where qn = π
W (n + 1

2 ) is the quantized transversal

momentum for the mode n, kx = (k2
F − q2

n)1/2, and k̃x =

v−1
F,xx[v2

F k̃
2
F − v2

F,yy(qn − ξAi,y)2]1/2. One major insight
visible in Eq. 3 is that only the y components of the Ai

affect transmission. From Eq. 2 we see the magnitudes
of the Ai,y are maximized when θ = 30◦, i.e. when
the strain is along the armchair edge (Supplementary
Information S2). We calculate the charge conductivity of
the device by properly summing the contributions from
all relevant modes:

σ =
L

W

2e2

h

1

3

∑
ξ

3∑
i

N∑
n

Tξ,i,n, (4)

whereN = Int(kFW/π− 1
2 ) is the number of energetically

allowed modes set by the contacts’ Fermi energy, and the
factor 1

3 accounts for the lifting of the three-fold K and
K ′ point degeneracy in strained graphene. Equations
2, 3, and 4 are similar to previously derived ones1–3,
but now permit the insertion of experimentally relevant
∆µcontact, ∆µε, θ, and Alat,i.

We now describe the qualitative impact of uniaxial
strain on the transmission, and how it sets the stage for
GQSTs. Figure 2(f), εtotal = 0, and (g), εtotal 6= 0,
show the Fermi circles in the contacts (big circles) and
the channel (small circles). The dashed lines indicate
the y-momentum conservation imposed to the conduction
modes as they propagate from the contacts into the
channel. The overlaid solid curves in Fig. 2(f) – (g)
show the transmission (radial axis ranges from 0 to
1) as a function of incidence angle on the channel
(polar axis). The transmission is calculated using Eq.
3 and parameters: L = 100 nm, W = 1000 nm,
∆µcontact = −0.12 eV, and k̃F = kF /2.5. In Fig.
2(f), a vector potential of Ai,y = kF is applied. This
Ai,y splits vertically the channel’s Fermi circle into two
(one per valley). Concretely, strain modifies the φ of
each transmission mode, and the number of energetically
allowed modes. As strain increases, the overlap between
the contact (black) and channel (red) Fermi circles
shrinks, such that fewer modes permit y-momentum
conservation. When the circles no longer overlap (Ai,y >

kF + k̃F ), transmission is always energetically forbidden
and σ → 0. We emphasize that the drop in conductivity
does not arise from a strain-induced band gap, which is
only expected to occur at much larger uniaxial strains
∼ 20 %46.

IV. GRAPHENE QUANTUM STRAIN
TRANSISTORS

We set out to map the behavior of the ballistic
conductivity from Eq. 4 as a function of experimentally
tunable parameters. We predict four clear strain-
tunable experimental transport signatures as shown
in Fig. 3: a lateral shift in the σ - VG curves, a
dramatic reduction in conductivity, a rich set of ballistic
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FIG. 3. Conductivity signatures of uniaxial QTSE in
graphene. (a) σ - VG for εmech = 0, 0.5, 1.0, and 1.5 %
(black, red, blue, gold) at θ = 0◦. The strain-induced scalar
potential shifts the σ - VG curves. The inset shows the gate-
shift of the Dirac point, VD, as a function of εtotal. (b) σ -
(VG − VD) at θ = 15◦. There is a rapid decrease of σ with
strain. Fabry-Pérot (FP) resonances are clearly visible. (c)
σ - (VG − VD) data at θ = 30◦ show a complete suppression
of σ under strain. There is an asymmetry between hole (σh)
and electron (σe) conductivities at opposite (VG−VD). (d) σ -
εtotal for θ = 15◦, with a linear fit (red) to extract (dσ/dε)max.
Inset: (dσ/dε)max - θ with a sinusoidal fit (red). (e) Color
map of dσ/d(∆µG) versus ∆µG and εtotal. Clear vertical
FP resonances are visible. The dashed lines identify the
three conductivity features kF = k̃F +Ai,y, where the vector
potentials turn off the propagation of conduction modes. (f)
Relative electron-hole asymmetry, η = 2(σh − σe)/(σh + σe),
as a function of εtotal at θ = 15◦. Insets: σ - VG shows η > 0
at εtotal = 1 % (bottom left), and η < 0 at εtotal = 3 % (top
right).



conductivity resonances, and a sizeable electron-hole
transport asymmetry. We quantify how these predictions
depend on realistic values of the contact doping, crystal
orientation, uniaxial strain, and gate voltage.

To calculate the σ data in Fig. 3 we used the
parameters introduced above: εthermal = 2.6 %,
∆µcontact = −0.12 eV, L = 100 nm and W = 1000 nm.
We considered the experimentally relevant regime where
kBT ∼ 0.1 meV < eVB < 1 meV � |∆µcontact| =
0.12 eV, and h̄vFAi,y reaches up to 0.34 eV at maximum
εtotal = 5.1 %, θ = 30◦. Based on these energy scales,
we can safely neglect the minor impact of a small VB and
low temperature on the calculated σ. We remind the
reader that the main objective of our applied theory is
to include experimental considerations which have major
impacts on the theoretical predictions. For instance,
the inclusion of thermally-induced strain εthermal in the
channel, the lattice distortion vector potentials Alat,i,
crystal orientation θ, and a realistic contact doping
∆µcontact, all lead to order of magnitude changes in σ
and the transistor on/off ratios. On the other hand,
we verified numerically (Supplementary Information S3)
that an exhaustive list of other factors such as realistic
impurity density, series resistance, gating of ∆µcontact,
thermal strain in the contacts, uncertainties on vF , ν, β,
L, W , etc., lead to modest or negligible corrections to σ
in strained devices.

In Fig. 3(a), we plot σ - VG for εmech = 0, 0.5, 1.0,
and 1.5 % (black, blue, red, gold) for θ = 0◦. At this
crystal orientation, the Ai,y are nearly zero. The only
significant consequence of strain is the scalar potential
∆µε = gε(1 − ν)εtotal. We remind the reader that even
when εmech = 0 %, there is a built-in thermal uniaxial
strain of εthermal = 2.6 %. A clear signature of the scalar
potential is apparent in Fig. 3(a): the σ - VG curves shift
with increasing strain. The shift of the gate-position of
the Dirac point, VD, is plotted in the inset of Fig. 3(a),

and given by VD = − e
CG

g2ε
π(h̄vF )2 (1− ν)2ε2

total. The value

of VD is independent of θ and ∆µcontact. It can therefore
be used in experiments to measure the εmech generated
by the instrumentation, and the built-in εthermal.

In Fig. 3(b) – (c), we plot σ - (VG − VD) at various
εmech. We subtracted VD from the horizontal axis to
remove the lateral shifts arising from the scalar potential,
and focus on the effects of the vector potentials. We
set θ respectively to 15◦ and 30◦ in Fig. 3(b) and (c).
The uniaxial strain rapidly decreases the conductivity,
and this suppression is maximized at θ = 30◦. We see
that σ can reach ≈ 0 for εmech as low as 0.5 %. The
range of VG where a clear turning-off of the conductivity
is possible grows rapidly as εmech increases to 1.5 %.
We remark that the strong tunability of σ via uniaxial
strain implies that shot noise measurements of the Fano
factor would provide yet another signature of the model
(Supplementary Information S4).

In Fig. 3(d) we show the dependence of σ versus εtotal,
where σ is calculated at (VG − VD) = 5 V and θ = 15◦.
The dashed line is a linear fit of the steepest section of

the curve, and defines (dσ/dε)max. This latter quantity
is plotted and fitted in the inset as a function of θ.
The fit is a sinusoidal function matching the form of
the hopping vector potential in Eq. 2. The discrepancy
between the data and fit below θ = 5◦ indicates thatAhop

is no longer the main contribution to the Ai at small
angles. The strong, and single-valued, dependence of
(dσ/dε)max on θ makes it plausible to extract the crystal
angle from transport data. This relaxes the requirement
to measure θ with polarized Raman spectroscopy34 or
STM imaging35.

Another consequence of uniaxial strain on transport
is the shifting of conductivity resonances, which are
visible in Fig. 3(b), (c) and (e). These resonances arise
from interferences of the ballistic carriers as they are
transmitted or reflected at the channel-contact interfaces.
The Fermi energy spacing of these FP resonances48

is ∆EFP = πh̄vF /(L cosφ). Figure 3(e) presents
dσ/d(∆µG) versus ∆µG and εtotal at θ = 15◦, and
shows bright vertical FP resonances. Convoluted with
the vertical resonances, are hyperbolas whose asymptotes
are labelled with dashed black lines. The slopes of
these three clear transport features are related to the
individual Ai,y. Each line is determined by the formula
kF = ∆µcontact/(h̄vF ) = ∆µG/(h̄vF ) + Ai,y. The drop
in conductivity across these dashed lines corresponds
to the closing of conduction modes by the mechanism
illustrated in Fig. 2(g). The three dashed lines intersect
when ∆µcontact = ∆µG. While only εtotal > 2.6 % would
be available in the proposed experiment, the observation
and extrapolation of the sharp Ai,y features would give
a direct measure of both ∆µcontact and Ai,y.

A fourth effect of εmech is to modify the electron-hole
transport asymmetry, σe 6= σh. We extract σe and σh
at (VG − VD) = ±5 V as shown in Fig. 3(c). We then
define a relative electron-hole transport asymmetry as
η = 2(σh − σe)/(σh + σe). This relative asymmetry η
is widely dependent on both εmech and θ. In Fig. 3(f)
we plot η - εmech at θ = 15◦. The two insets display the
asymmetric shape of σ - (VG−VD) at respectively εtotal =
1 % (bottom left), and 3 % (top right). At εtotal ≈ 1.8 %,
the electron-hole asymmetry η reverses sign. The vertical
dashed line in Fig. 3(f) shows the expected εthermal in
the devices, and the experimentally available εtotal values
would lie to the right of this line. For a known θ, the
dependence of η versus εtotal could be another method
to experimentally determine the value of ∆µcontact. We
are now ready to assess the potential of the proposed
devices for a practical demonstration of high on/off ratio
graphene quantum strain transistors (GQSTs).

We consider GQST device operation at low
temperature (∼1 K), which imposes a minimum
εtotal = εthermal = 2.6 % to the suspended channel.
Figure 4(a) shows σ - VG at εmech = 2.5 % for θ = 30◦,
and tvac respectively 50 nm (black), 100 nm (blue), and
200 nm (red). As the spacing is increased, larger VG’s
are needed to achieve high on/off ratios. For a realistic
tvac = 50 nm, very high on/off ratios (σon/off > 104) are
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FIG. 4. Graphene quantum strain transistors (GQSTs). (a)
σ - VG with a gate-channel spacing tvac = 50 nm (black),
100 nm (red), and 200 nm (blue) and under strain εtotal =
5.1 %, θ = 30◦. The 50 nm gate spacing gives rise to a
robust GQST effect with σon/off � 104. The inset shows a
subthreshold slope of 240 mV/dec when tvac = 50 nm. (b)
σ - εmech shows the extreme strain sensitivity of σ versus
uniaxial strain at fixed VG = 0 V (black), −5 V (red), and
−10 V (blue). Inset: Resistance-based strain sensitivity at
VG = −8 V (gold) and −10 V (blue). (c) σon/off - ∆µcontact -
θ color maps at εtotal = 5.1% when ∆µcontact < 0 (p-doping of
contacts), and (d) when ∆µcontact > 0 (n-doping of contacts).
The color scales show σon/off calculated with ∆VG = 10 V (i.e.
at 0 V and −10 V). The contour lines mark the boundary
where σon/off > 104, corresponding to a strong GQST effect.
The solid black, dashed white, and dashed black contours are
for ∆VG = 10 V, 5 V, and 10 V but for a lower εtotal = 2.6 %,
respectively.

possible even for modest VG’s between −5 V and 0 V.
The inset of Fig. 4(a) plots the σ - VG data on a log
scale, and shows a subthreshold slope of 240 mV/dec.
We cap the maximum measurable device resistance to
R = 100 GΩ with VB = 1 mV, which corresponds to a
σon/off = 10−8 or R/R0 = 108. The subthreshold slope
of GQSTs is not limited by the thermionic limit, and
would decrease to less than 60 mV/dec when tvac < 10
nm. In the long term, GQST devices could be designed
for room-temperature operation using uniaxial strains
built into substrates17,18. This would lift the constraint
of suspending the channel.

Figure 4(b) demonstrates a second application for
GQSTs, as ultra-sensitive strain or pressure sensors.
The turning on and off of the conductivity can be

triggered entirely by mechanical actuation, while holding
VG constant. The data are respectively σ - εmech at
VG = 0 V (black), −5 V (red), and −10 V (blue),
with tvac = 50 nm and θ = 30◦. In the inset of
Fig. 4(b), we show the expected relative resistance
change, R/R0, of the graphene channel at VG = −8
V and −10 V. While previously demonstrated graphene
strain sensors21,22 have shown a roughly linear resistance
change with strain, the present devices show a range
of exponential sensitivity. The location in εmech of this
exponential sensitivity region is tunable with VG.

In Figs. 4(c) – (d), we plot color maps of the highest
σon/off ratio extracted from data similar to Fig. 4(a)
within a range ∆VG = 10 V (i.e. comparing σ at VG = 0
V and −10 V). We map the on/off ratio, for tvac = 50
nm, as a function of the lattice orientation θ, and the
contact doping ∆µcontact < 0 and > 0, in panel (c)
and (d) respectively. There is a broad region (red) of
parameter space predicting excellent GQSTs, making it
plausible that this platform can lead to an experimental
demonstration. For instance, when εtotal = 5.1 % and
|∆µcontact| ∼ 0.1 eV, a σon/off > 104 is achieved in devices
where θ ≥ 18◦. Moreover, an excellent GQST effect
is also calculated over a broad parameter range when
using a smaller ∆VG = 5 V (VG = 0 V and −5 V), as
shown by the dashed white contours. Finally, the effect
is robust to variations in the exact value of the applied
mechanical and thermal strains. To show this, we draw
additional dashed black contour lines in Figs. 4(c) – (d)
corresponding to σon/off > 104 when εtotal = 2.6 %.

We note that a series resistance arising from the gold-
graphene interface, or an extrinsic impurity doping of
the channel would not significantly modify Fig. 4 (c)
– (d). For a realistic series resistance44,49 of 400 Ω,
the calculated σ at εtotal = 5.1 % is modified by less
than 20 % (Supplementary Information S3), and has a
negligible impact on σon/off. A realistic charge impurity

density31 of nimp = 5 × 1010 cm−2 is equivalent to the
doping created by (VG − VD) = 0.45 V, for tvac = 50
nm. From the inset of Fig. 3(a), we see that the location
of the charge degeneracy point VD is significantly below
VG = −10 V at εtotal = 5.1 %. Consequently, in Fig.
4 the doping of the channel is largely dominated by the
electrostatic gate doping, and the impact of nimp would
be negligible.

V. CONCLUSIONS

In conclusion, we proposed an experimental platform
able to realistically implement proposals for uniaxial
strain-engineering of quantum transport in 2D materials.
Some of the key aspects of the proposed devices
and instrumentation are a wide aspect ratio of the
transistor channels, removing the need for ordered crystal
edges, and independent control of both the mechanical
strain and the charge density in the devices. This
platform provides a wide experimental tunability for low-



temperature transport experiments.
We then reported an applied theoretical model which

quantitatively describes uniaxial QTSE in graphene. The
model includes the effect of strain on the Fermi energy
(scalar potential), on the position of the Dirac points in k-
space (gauge vector potentials), and the anisotropy of the
Fermi velocity. We included the dominant experimental
parameters such as, contact doping, the reciprocal lattice
distortion for arbitrary crystal orientations, and both
the thermally and mechanically generated strains. We
showed that the σ - VG calculated data as a function
of εtotal give four experimentally observable signatures.
They are a gate-shift of the charge degeneracy point, a
dramatic decrease in conductivity, a rich set of ballistic
interferences, and a tunable electron-hole conductivity
asymmetry.

Finally, we assessed the performance of the proposed
GQST devices. We found that comfortably within

the experimental capabilities, the charge conductivity
in graphene devices can be completely suppressed by
uniaxial strain. We mapped out the parameter space for
contact doping, crystal orientation, and applied strain
where a robust GQST effect with σon/off > 104 can be
achieved using modest VG’s. This transistor effect is
purely a result of the quantum (ballistic) nature of the
transport, and does not arise from band gap generation.
Recent progress in making room-temperature ballistic
graphene devices6, and building controlled strain fields
into substrates17,18, pave the way for GQSTs to be used
in flexible electronics7, and in valleytronics23,24. More
immediately, the proposed platform and model should
lead to a demonstration and optimization of GQSTs.
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