	STAT 360 Linear Models Summer 2014		
Instructor:	Dr. Arusharka Sen, Office: LB 921-23 (SGW), Phone: 848-2424, Ext. 3230 Email: arusharka.sen@concordia.ca		
Office Hours:	Monday, Tuesday, 15:30-16:30.		
Text:	<i>Applied Linear Regression</i> Models, 4th Edition, by Kutner, Nachtsheim and Neter, McGraw Hill-Irwin, 2004.		
Final Grade:	 a) Assignments (12%) b) Mid-term test (40%) c) Final examination (48%) 		
Note:	 Assignments are compulsory. Late assignments will not be accepted. A mid-term exam will be held on Wednesday, May 28, 2014. This exam, as 		

- well as the final, will be closed book exams.
- 3) Please note that there are **no supplemental privileges** in this course.

Lectures	Sections	Topics to be covered
1	1.3, 1.6, 1.7, 1.8	Simple linear regression models; estimation of regression function;
		estimation of error term variance; normal error regression model.
2	2.1, 2.2, 2.4	Inferences concerning β_1 and β_0 ; interval estimation of E (Y _h).
3	2.5, 2.6, 2.7	Introduction to MINITAB, prediction of new observation; confidence
		band for regression line; ANOVA approach to regression analysis.
4	2.8, 2.9, 3.1, 3.2	General linear test approach; descriptive measures of linear association
		between X and Y; diagnostics for predictor variable; residuals.
5	3.3, 3.4, 3.7	Diagnostic for residuals; overview of tests involving residuals; F-test for
		lack of fit.
6	4.1, 4.2, 4.3, 4.4	Joint estimation of β_0 and β_2 simultaneous estimation of mean responses;
		simultaneous prediction intervals for new observations; regression
		through origin.
7	Midterm	
8	5.6, 5.8, 5.9, 5.10	Inverse of a matrix; random vectors and matrices; simple linear
		regression model in matrix terms; least square estimation of regression
		parameters
9	5.11, 5.12, 5.13	Fitted values and residuals; ANOVA results; inferences in regression
		analysis.
10	6.1, 6.2, 6.3	Multiple regression models; general linear regression model in matrix
		terms; estimation of regression coefficients.
11	6.4, 6.5, 6.6	Fitted values and residuals; ANOVA results; inferences about regression
		parameters.
12	6.7, 6.9, 7.1, 7.2	Estimation of mean response and prediction of new observation;
		multiple regression with two predictor variables. Extra sum of squares &
		its application.
13, 14	7.3, 7.4, 7.5 &	Tests concerning regression coefficients; coefficient of partial
	Review	determination; standardized multiple regression models.