Problem 1: Consider the measure space \(\{ \mathbb{R}, \mathcal{L}, m \} \), where \(m \) is Lebesgue measure.

(a) State Fatou’s lemma.

(b) Let \(\{ f_n \} \) be a sequence of integrable functions satisfying \(0 \leq f_{n+1} \leq f_n \) almost everywhere for all \(n \geq 1 \). Prove: If \(\int_{\mathbb{R}} f_n \, dm \to 0 \), as \(n \to \infty \), then \(f = \lim_{n \to \infty} f_n \) exists and is equal to 0 almost everywhere.

(c) Prove that \(\int_{\mathbb{R}} |f| \, dm = 0 \) implies \(f = 0 \) almost everywhere.

(d) Prove
\[
\lim_{n \to +\infty} \int_{0}^{n} \left(1 + \frac{x}{n} \right)^n e^{-2x} \, dm(x) = 1 .
\]

Problem 2: (a) A matrix \(A \) is said to be skew-symmetric if \(A^T = -A \) (\(A^T \) is the transposition of \(A \)). Prove: If matrix \(A \) is skew symmetric, then \(A^2 \) is symmetric and for any vector \(x \) we have \(x^T A^2 x \leq 0 \).

(b) (b1) Is there a linear transformation from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \) which is represented by a diagonal matrix when written with respect to any fixed basis?

(b2) True or false: A linear transformation \(T : V \to V \) that is onto, must be an isomorphism.

(b3) True or false: if \(A \) is a 3 \(\times \) 3 matrix that has three different eigenvalues, then \(A \) is diagonalizable.

(b4) True or false: if the set \(\{ u, v, w \} \) is linearly independent, then so is
\[
\{ u, u - v, u + v + w \} .
\]

(b5) i) True or false: Every \(n \times n \) complex matrix has an eigenvalue.

(b5) ii) True or false: Every \(n \times n \) real matrix has an eigenvalue.
An $n \times n$ circulant matrix C takes the form

$$C = \begin{bmatrix}
 c_0 & c_{n-1} & \cdots & c_2 & c_1 \\
 c_1 & c_0 & c_{n-1} & \cdots & c_2 \\
 \vdots & c_1 & c_0 & \ddots & \vdots \\
 c_{n-2} & \vdots & \ddots & \ddots & c_{n-1} \\
 c_{n-1} & c_{n-2} & \cdots & c_1 & c_0
\end{bmatrix}.$$

Let $\omega_j = \exp(2\pi ij/n)$, $j = 0, 1, \ldots, n - 1$, be the n-th roots of unity. Show that the column vectors

$$v_j = (1, \omega_j, \omega_j^2, \ldots, \omega_j^{n-1})$$

$j = 0, 1, \ldots, n - 1$, are the eigenvectors of C and that they are linearly independent.

Problem 3 : Let $f : X \to Y$ be a function between two metric spaces.

(a) Prove that f is continuous if and only if for any $B \subset Y$

$$f^{-1}(\text{Int}(B)) \subseteq \text{Int}(f^{-1}(B)),$$

where $\text{Int}(A)$ denotes the interior of A.

(b) Is the following true: If f is continuous and K is complete in X, then $f(K)$ is complete in Y. (Justify your answer.)

(c) Is the following true: If X is compact and f is continuous, then for any closed $K \subset X$ the image $f(K) \subset Y$ is also closed. (Justify your answer.)

Problem 4 : (a) Let $x_0 = 2$ and $x_{n+1} = \frac{1}{2}x_n + \frac{1}{x_n}$ for $n \geq 0$. Prove that the sequence $\{x_n\}_{n \geq 0}$ is convergent and find its limit.

What happens if we change x_0 to $x_0 = 2012$?

(b) Consider the functional series

$$F(t) = \sum_{n=1}^{\infty} \frac{1}{n} \sin^n(\pi t), \quad t \in [0, 1].$$

Is F well defined on $[0, 1]$?

Show that F is continuous on $[0, a]$ for any $a < 1/2$.

Is F differentiable on $[0, a]$ for any $a < 1/2$? (Justify your answer.)

(c) Function f is continuous on a circle. Show that there exists a diameter such that the values of f are equal on the diameter ends.
Problem 5:
(a) Prove: If \(f = u + iv \) is analytic in an open domain \(D \) and \(|f| \) is constant in \(D \), then \(f \) is constant.

(b) Does there exist a function \(f \) analytic in the plane satisfying \(f(1/n) = 1/n^2 \) for all \(n \geq 1 \) and \(f(5) = 5 \)? (Justify your answer.)

(c) How many zeros has \(f(z) = z^5 + 3z^3 + 7 \) in the disk \(D(0, 2) \)? How many zeros has \(f(z) = z^5 + 3z^3 + 7 \) in the annulus between the disks \(D(0, 1) \) and \(D(0, 2) \)?

(d) Evaluate:
\[
\int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + 16} \, dx.
\]

Problem 6:
Let us define the space \(X = \mathbb{R}^2 \) and a function \(d((x_1, y_1), (x_2, y_2)) \) as follows:
(i) if \(x_1 = x_2 \), then \(d((x_1, y_1), (x_2, y_2)) = |y_1 - y_2| \);
(ii) otherwise \(d((x_1, y_1), (x_2, y_2)) = |x_1 - y_1| + \sqrt{2} |x_1 - x_2| + |x_2 - y_2| \).

(a) Show that \(d \) defines metric on \(X \) (for triangle inequality you can consider just one case of possible positioning of points \((x_1, y_1), (x_2, y_2), (x_3, y_3) \));

(b) Sketch the balls: \(B((3, 0), 1), B((1, 1), 1) \);

(c) Is \((X, d) \) a complete metric space? (Justify your answer.)

(d) Is \((X, d) \) a compact metric space? (Justify your answer.)

(e) Is \((X, d) \) a separable metric space? (Justify your answer.)

(f) Let \(\rho \) be the standard Euclidean metric on \(X \). Is the identity a continuous map from \((X, \rho) \) onto \((X, d) \)? Is the identity a continuous map from \((X, d) \) onto \((X, \rho) \)? (Justify your answer.)